
Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

This file is licensed under the Creative Commons Attribution-NonCommercial 3.0 (CC BY-NC 3.0)

Information Service Engineering
Lecture 4: Natural Language Processing - 3

Prof. Dr. Harald Sack
FIZ Karlsruhe - Leibniz Institute for Information Infrastructure
AIFB - Karlsruhe Institute of Technology

Summer Semester 2021

http://creativecommons.org/licenses/by-nc/3.0/

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Service Engineering
Last Lecture: Natural Language Processing (2)

2

● Phonetic, lexical, syntactic,
semantic Ambiguity and
Disambiguation

● Evaluation, Ground Truth, Recall,
Precision, F-Measure

● Regular Expressions

2.0 What is Natural Language Processing?

2.1 NLP and Basic Linguistic Knowledge

2.2 Morphology

2.3 NLP Applications

2.4 NLP Techniques

2.5 NLP Challenges

2.6 Evaluation, Precision and Recall

2.7 Regular Expressions

2.8 Finite State Automata

2.9 Tokenization

2.10 Language Model and N-Grams

2.11 Part-of-Speech Tagging

2.12 Word Embeddings

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Service Engineering
Lecture 4: Natural Language Processing (3)

3

2.0 What is Natural Language Processing?

2.1 NLP and Basic Linguistic Knowledge

2.2 Morphology

2.3 NLP Applications

2.4 NLP Techniques

2.5 NLP Challenges

2.6 Evaluation, Precision and Recall

2.7 Regular Expressions

2.8 Finite State Automata

2.9 Tokenization

2.10 Language Model and N-Grams

2.11 Part-of-Speech Tagging

2.12 Word Embeddings

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Regular Expressions and Finite State Automata (FSA)

● Regular Expressions

○ are one way to characterize a Regular Language

as e.g. /baa+!/

● In general Regular Languages can be characterized via

○ Regular expressions

○ Finite State Automata

○ Regular grammars

4

Kleene’s Theorem

Stephen Cole Kleene
(1909 - 1994)

Chomsky

Noam Chomsky
(*1928)

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

● A Finite State Automaton is an abstract model of a computer which

○ reads an input string,

○ and changes its internal state

depending on the current input symbol.

● An FSA can either accept or reject the input string.

● Every automaton defines a language, i.e. the set of strings it accepts.

5

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

● Finite State Automata are composed of

○ Vertices (nodes)

○ Arcs (links)

● What words (strings) can be recognized by this FSA example?

○ baa! / baaa! / baaaa! / baaaaa! / ..

● Matching RE?

○ /baa+!/

6

start state accepting state
state transition

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● Strings accepted:

○ baa!

○ baaaaa!

● Strings not accepted:

○ abc

○ babb

○ !bcd
7

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Formalisation of a Finite State Automaton (FSA)

● FSA A = (Q, Σ, q
0
, F, 𝜹(q,i)), with

● Q: finite set {q
0
,q

1
, q

2
, …, q

N-1
} of N states

● Σ: finite input alphabet of symbols

● q
0
: the designated start state

● F: the set of final states, F⊆Q

● 𝜹(q,i): the transition function

𝜹: Q x Σ → Q ,

𝜹(q,i) = q’ for q, q’∈Q , i∈Σ

8

You denote the transition
function 𝜹 in terms of a
state transition table

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Formalisation of “Sheeptalk”

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table● Q = {q
0
,q

1
, q

2
,q

3
,q

4
}

● Σ = {a,b,!}

● q
0
: the start state

● F = {q
4
}

● 𝜹(q,i): defined by state transition table

9

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step1)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

10

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step2)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

11

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step3)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

12

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step4)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

13

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step4)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

● q
4
 is the final state, string is accepted.

14

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA) for “Sheeptalk”

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● FSA A = (Q, Σ, q
0
, F, 𝜹(q,i)), with

○ Q = {q
0
,q

1
, q

2
,q

3
,q

4
}

○ Σ = {a,b,!}

○ q
0
: the start state

○ F = {q
4
}

○ 𝜹(q,i): defined by state transition table

15

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Formal Language

● A model that can both generate and recognize all and only those

strings given by its definition.

● An automaton can describe an infinite set with a closed form.

● “Sheeptalk” model “m”:

○ ∑ = {b,a,!} - Alphabet

○ L(m) = formal language characterized by „m“

○ L(m) = {baa!,baaa!,baaaa!,....}

○ Usually it holds that L⊂∑*

16

The Kleene closure ∑* (‘sigma star’)
is the (infinite) set of all strings that
can be formed from ∑.

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Formal Language vs. Natural Language

● A formal language is not a natural language.

● But we can use formal languages to model parts of natural

languages,

○ such as e.g. phonology, morphology or syntax.

17

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Another (simple) FSA Example

● Modelling amounts of money (e.g. 0-99 cent):

18

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Non Deterministic FSAs

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q2,q3 ∅ ∅

q3 ∅ ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● 𝜹(q,i): the transition function for NFAs

𝜹: Q x Σ → 2Q

𝜹(q,i) = Q’ for q∈ Q , Q’ ⊆ Q , i ∈ Σ

ε

19

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Non Deterministic FSAs with ε-Transitions

Input

State a b ! ε

q0 ∅ q1 ∅ ∅

q1 q2 ∅ ∅ ∅

q2 q3 ∅ ∅ ∅

q3 ∅ ∅ q4 q2

q4 ∅ ∅ ∅ ∅

State Transition Table

ε
● 𝜹(q,i): the transition function for NFAs

𝜹: Q x Σε → 2Q , Σε
=

Σ ∪ {ε}, Σ ∩ {ε} = ∅

𝜹(q,i) = Q’ for q∈ Q , Q’ ⊆ Q , i ∈ Σε
20

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Morphological Parsing

Input Word Output Analysis

Morphological
Parser

cats cat +N +Pl

21

surface form lexical form

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Morphological Parser

● To construct a morphological parser, we need:

1. Lexicon: list of stems + type and affixes .

2. Morphotactic rules: model of morpheme ordering,

e.g. plural affix -s follows noun.

3. Orthographic rules: spelling rules for morpheme combinations,

e.g. y → ie that changes city + -s into cities.

22

= part-of-speech,
 as e.g. noun, verb, adjective, etc.

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

FSA for Morphology

q0 q1q1

stem● grace:

● dis-grace:

● grace-ful:

● dis-grace-ful:

q1 q1q2

stem

q0

prefix

q1 q1q2

suffix

q0

stem

q2 q1q3

stem

q1

prefix

q0

suffix

23

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Union: Merging Automata

● grace,

dis-grace,

grace-ful,

dis-grace-ful

q2 q1q3

stem

q1

prefix

q0

suffix

ε

q2

24

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

q2 q2

2. Natural Language Processing / 2.8 Finite State Automata

Simple FSA for English Nominal Inflection

q0 q1 q2

regular noun plural -s

irregular
plural noun

irregular
singular noun

reg-noun irreg-pl-noun irreg-sg-noun plural

dog geese goose -s

cat sheep sheep

aardvark mice mouse

● Some irregular words require stem
changes, e.g. goose - geese.

25

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Expanded FSA for a Few English Nouns

d

o

g

a

c

t

ε

g o o

e
e

s

s

e

s

26

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Recognition vs. Analysis

● FSAs can recognize (accept) a string, but they don’t tell us its internal

structure.

● We need a machine that maps (transduces) the input string into an

output string that encodes its structure:

c a t +N +Pl
Lexical

(output)

c a t s
Surface
(input)

27

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducer (FST)

● A Finite State Transducer maps between two sets of symbols.

● 2-tape FSA that recognizes or generates pairs of strings.

● A FST defines relations between sets of strings.

28

input output

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

● A finite state transducer T = (Q, Σ, Δ, q0, F, 𝜹, σ) consists of:

○ Q: finite set {q
0
,q

1
, q

2
, …, q

N-1
} of N states

○ Σ: finite set of input symbols

○ Δ: finite set of output symbols

○ q
0
: the designated start state

○ F: the set of final states, F ⊆ Q

○ 𝜹(q,i): the transition function

𝜹: Q x Σ → 2Q , 𝜹(q,i) = Q’ for q∈Q , Q’⊆Q , i∈Σ

○ σ(q,i): the output function

σ: Q x Σ →Δ* , σ(q,i) = ω for q∈Q , i ∈ Σ , ω∈Δ*

Formalisation of a Finite State Transducer (FST)

29

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

● A finite state transducer T = L
in

 ⨉ L
out

 defines a relation between two

regular languages L
in

 and L
out

:

● L
in

 = {cat, cats, fox, foxes, ...}

● L
out

 = {cat+N+Sg, cat+N+Pl, fox+N+Sg, fox+N+Pl ...}

Formalisation of a Finite State Transducer (FST)

● T = { <cat, cat+N+Sg>, <cats, cat+N+Pl>, <fox, fox+N+Sg>,

 <foxes, fox+N+Pl> }

30

FST as “translator”:
- Reads a string (Lin) and

outputs another string (Lout)
- Morphological parsing:

Surface form (input);
Lexical form (output)

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

● Two tapes

○ Upper (lexical) tape: output alphabet Δ
■ cat +N +Pl

○ Lower (surface) tape: input alphabet Σ
■ cats

c a t +N +PlLexical

c a t s Surface

31

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

● Lexical form : surface form ► goose:geese ► g:g o:e o:e s:s e:e
○ Default pairs (g:g) vs. Feasible pairs (e.g., o:e)

32

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

33

● We indicate morpheme boundaries (^) and word boundaries (#).

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

FST and Orthographic Rules

● English often requires spelling changes at morpheme boundaries.

● Introduction of orthographic rules, as e.g.

Name Orthographic Rule Example

Consonant doubling Consonant doubled before -ing/-ed beg / begging

E deletion Silent e dropped before -ing and -ed make / making

E insertion E added after -s, -z, -x, -cg. -sh before -s fox / foxes

Y replacement -y changes to -ie before -s, -i before -ed try / tries

K insertion Verbs ending with vowel + -c ad -k panic / panicked

34

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Intermediate Representations

● English plural -s:
○ cat ⇒ cats, dog ⇒ dogs
○ but: fox ⇒ foxes, buzz ⇒ buzzes

● Idea: We define an intermediate representation which
captures morpheme boundaries (^) and word boundaries (#):

○ Lexical form: cat+N+Pl fox+N+Pl
○ Intermediate

representation: cat^s# fox^s#
○ Surface form: cats foxes

● Intermediate-to-Surface Spelling Rule:
If plural ‘s’ follows a morpheme ending in ‘x’,‘z’ or ‘s’, insert ‘e’.

35

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

FST and Orthographic Rules

f o x +N +PlLexical

f o x ^ s #Intermediate

f o x e sSurface

Lexicon FST

FST
1
,...,FST

n
orthographic rules

36

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

More FST Applications

http://www.masswerk.at/elizabot/ 37

http://www.masswerk.at/elizabot/

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

ELIZA as an FST Cascade

● Human: You don't argue with me.
● Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU

● 1. Replace you with I and me with you:

○ “You don't argue with me.”
○ I DON’T ARGUE WITH YOU.

● 2. Replace <string> with Why do you think <string>:

○ WHY DO YOU THINK I DON’T ARGUE WITH YOU

38

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Service Engineering
Lecture 4: Natural Language Processing (3)

39

2.0 What is Natural Language Processing?

2.1 NLP and Basic Linguistic Knowledge

2.2 Morphology

2.3 NLP Applications

2.4 NLP Techniques

2.5 NLP Challenges

2.6 Evaluation, Precision and Recall

2.7 Regular Expressions

2.8 Finite State Automata

2.9 Tokenization

2.10 Language Model and N-Grams

2.11 Part-of-Speech Tagging

2.12 Word Embeddings

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Tokenization

● Tokenization is the process of breaking a stream of text up into
words, phrases, symbols, or other meaningful elements.

● Distinguish

○ Word tokenization

○ Sentence tokenization

● At first glance, English word tokenization might seem simple, but...

40

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● English word tokenization might simply make use of white spaces…

● Tokenization can easily be implemented via regular expressions:

○ \W*\s+

Latest figures from the US government show the trade deficit with
China reached an all-time high of $365.7bn (£250.1bn) last year. By
February this year it had already reached $57bn.

Anything
non-alpha-
numeric

Followed by
white spaces

http://regexr.com/

41

http://regexr.com/

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

http://regexr.com/

42

http://regexr.com/

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● Intended result:

Latest figures from the US government show the trade deficit with
China reached an all-time high of $365.7bn (£250.1bn) last year. By
February this year it had already reached $57bn.

Latest figures from the US government show the trade deficit with
China reached an all time high of $ 365.7 bn (£ 250.1 bn) last year .
By February this year it had already reached $ 57 bn .

43

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● Issues related to tokenization:

○ Separators: punctuations

○ Exceptions: „m.p.h“, „Ph.D“

■ Expansions: „we're“ = „we are“

■ Multi-words expressions: „New York“

○ Numbers:

■ Dates: 3/20/91

■ More Dates: 55 B.C.

■ IP addresses: 192.168.0.1

■ Phone numbers: (800) 234-2333

■ ...

44

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Segmentation = Tokenization

● Word segmentation: separation of the morphemes

but also tokenization for languages without 'space' character.

● Chinese, Japanese: sentences but not words are delimited.

● Thai and Lao: phrases and sentences but not words are delimited.

● Vietnamese: syllables but not words are delimited.

http://www.bjnews.com.cn/

45

http://www.bjnews.com.cn/

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Sentence Splitting

● Dividing a string of written language into its component sentences.

● In English and some other languages, using punctuation,

particularly the full stop/period character (.?!) is a reasonable

approximation.

● Non trivial problem, since in English the full stop character also is

used for abbreviations or numbers.

○ Examples: „Mr.“, „4.5“

46

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Sentence Splitting

● “Vanilla” Approach

○ If it's a period, it ends a sentence.

○ If the preceding token is in the hand-compiled list of

abbreviations, then it doesn't end a sentence.

○ If the next token is capitalized, then it ends a sentence.

● Capable of detecting ca. 95% of sentence boundaries.

● Alternative Approaches:

○ Based on regular expressions

○ Based on rules or machine learning, e.g. binary classifiers that

decide whether a certain punctuation is part of a word or not.
47

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Service Engineering
Lecture 4: Natural Language Processing (3)

48

2.0 What is Natural Language Processing?

2.1 NLP and Basic Linguistic Knowledge

2.2 Morphology

2.3 NLP Applications

2.4 NLP Techniques

2.5 NLP Challenges

2.6 Evaluation, Precision and Recall

2.7 Regular Expressions

2.8 Finite State Automata

2.9 Tokenization

2.10 Language Model and N-Grams

2.11 Part-of-Speech Tagging

2.12 Word Embeddings

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Can we “predict” a Word?
49

Jean Marc Cote, France in 2000 year (XXI century). Future school.(1901), public domain

https://commons.wikimedia.org/wiki/File:France_in_XXI_Century._School.jpg

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Word Prediction

● “To be or not to…”

● “The pen is mightier than the…”

● “You can’t judge a book by…”

● “Es irrt der Mensch, solang’ er ….”

● “Die Botschaft hör ich wohl, allein mir fehlt …”

50

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Human Prediction

● How do humans predict words?

○ Domain knowledge, as e.g.

red blood vs. hat

○ Syntactic knowledge, as e.g.

The … <adjective|noun>

○ Lexical knowledge, as e.g.

Baked potato vs. steak

● Claim: A useful part of the knowledge needed to allow Word Prediction

can be captured using simple statistical techniques.

51

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

N-gram Models

● Word Prediction can be formalized with probabilistic N-gram models:

○ 2-gram (bigram): (to, be), (be, or), (or, not), (not, to)

○ 3-gram (trigram): (to, be, or), (be, or, not), (or, not, to)

● An N-gram is an N-Token of words.

● In an N-gram model, the last word w
n
 depends only on the previous n-1

words (w
1
,...w

n-1
) (Markov assumption)

● and thus, the last word w
n
 will be computed from the previous n-1

words (w
1
,...w

n-1
).

● Statistical models of word sequences are called Language Models (LM).

52

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Speech Recognition

● „Computers can recognize speech.“

„Computers can wreck a nice peach.”

● „Give peace a chance.“

„Give peas a chance.“

● „ice cream.“

„I scream.“

● “Two birds are flying.”

“Two beards are flying.”
53

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Handwriting Recognition

http://webdemo.myscript.com/views/text.html
54

http://webdemo.myscript.com/views/text.html

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Basic Probability Theory

● Trial:
○ Throwing a dice, predicting a word.

● Sample space Ω:
○ The set of all possible outcomes

(all numbers in a lottery; all words in Shakespeare’s plays).

● Event ω ⊆ Ω:
○ An actual outcome (a subset of Ω)

(predicting ‘the’, throwing a “3”,...).

55

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

The Probability of Events

● Kolmogorov Axioms:

1. Each event has a probability between 0 and 1.

2. The null event has probability 0.

The probability that any event happens is 1.

3. The probability of all disjoint events sums to 1.

56

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Statistical Language Model

● Finding the probability of a sentence or a sequence of words:

● Example:

○ „Computers can recognize speech.“

○ P(Computer, can, recognize, speech)

● Rank possible sentences:

○ P(“Today is Wednesday”) > P(“Wednesday today is”)

○ P(“Today is Wednesday”) > P(“Today is book”)

57

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

Conditional Probability

Conditional Probability P(B|A)
that event B occurs under the assumption that
event A has already occurred.

Bayes Theorem
The probability that event A occurs followed by event B equals
the probability that event A occurs and
event B occurs under the assumption that event A has occurred.

Extension to multiple events via chain rule

58

Thomas Bayes
(1700-1761)

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Conditional Probability

● P(to be or not) = P(to) ·

P(be|to) ·

P(or|to,be) ·

P(not|to,be,or)

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.

59

● But how do we determine the probability of the occurrence of words?

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Conditional Probability

● P(to be or not) = P(to) ·

P(be|to) ·

P(or|to,be) ·

P(not|to,be,or)

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.

60

● But how do we determine the probability of the occurrence of words?

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

Corpora

● To understand and model how language works, we need empirical evidence.

● Probabilities are based on counting things.

● Idea: Count the occurrence of words in large collections of texts (=corpora).

● A corpus is a computer-readable collection of text or speech.

Ideally, naturally-occurring corpora serve as realistic samples of a language.

○ Corpus of Contemporary American English: 520m words, US, 1990-2015

○ The British National Corpus: 100m words, UK, 1991-1994

○ The International Corpus of English: 23 local corpora, 1m words each

○ The Google N-gram Corpus

■ N-grams from printed sources, 1500-2008, in English, Chinese, French, German,

Hebrew, Italian, Russian, or Spanish,

1,024,908,267,229 words.

http://www.corpusdata.org/
http://www.natcorp.ox.ac.uk/

https://books.google.com/ngrams
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html 61

http://www.corpusdata.org/
http://www.natcorp.ox.ac.uk/
https://books.google.com/ngrams
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

https://books.google.com/ngrams62

https://books.google.com/ngrams

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Language Model and N-Grams

Complexity of a Statistical Language Model

● Complexity: O(|V|n*) V...Vocabulary, n*...maximum sentence length

○ 475,000 main headwords in Webster's Third New International Dictionary

○ Average English sentence length: 14.3 words

○ A rough estimate: 𝑂(475,00014)～3.38 ·1066 TB

● By applying an N-gram model, we make the model more compact: 𝑂(475,000N).

63

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Models

● The intuition of the N-gram model is that

○ instead of computing the probability of a word given its entire history,

○ we can approximate the history by just the last few words.

● For the bigram model we approximate the probability of a word given all its

previous words by using only the conditional probability of its preceding

word (Markov assumption):

64

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

Markov Assumption

● Using the Markov Assumption to compute the probability of a text

sequence for the bigram model:

65

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Model

● Unigram:

● Bigram:

● Trigram:

● N-gram:

66

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

Maximum Likelihood Estimation

● How to estimate N-gram probabilities?

● Maximum Likelihood Estimation (MLE)

○ A method of estimating the parameters of a statistical model

given observations.

○ By finding the parameter values that maximize the likelihood of

making the observations given the parameters.

● The MLE for the parameters of an N-gram model is computed by

normalizing counts from a corpus.

67

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

Markov Assumption and Maximum Likelihood Estimation

P(to be or not) = P(not|to be or) ⋅

P(or|to be) ⋅

P(be|to) ⋅

P(to)

P(to be or not) = P(to) ⋅

P(be|to) ⋅

P(or|be) ⋅

P(not|or)

Markov Assumption

Maximum
Likelihood
Estimation

68

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Model - Generating Shakespeare

● Unigram: To him swallowed confess hear both. Which. Of save on trail for are

ay device and rote life have

Hill he late speaks; or! a more to leg less first you enter.

● Bigram: Why dost stand forth thy canopy, forsooth; he is this palpable hit

the King Henry. Live king. Follow.

What means, sir. I confess she? then all sorts, he is trim, captain

● Trigram: Fly, and will rid me these news of price. Therefore the sadness of

parting, as they say, ’tis done.

This shall forbid it should be branded, if renown made it empty.

● 4-gram: King Henry. What! I will go seek the traitor Gloucester. Exeunt some

of the watch. A great banquet serv’d in;

It cannot be but so.

69

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams

How to generate “plausible” Text from N-grams

● Example for 2-grams (for n-grams simply adapt).

● From your corpus:
1. Choose a random 2-gram with (<s>,w

1
)

2. Next choose another random n-gram (w
1
,w

2
)

3. Continue choosing (w
i
,w

i+1
), until you choose (w

n
,</s>) as the last word.

4. Then tie all new words (<s>,w
1
,...,w

n
,</s>) together in a sentence.

● Why does it work?
○ |Shakespeare Corpus|=884,647 tokens, |V|=29,066
○ Shakespeare produced only 300,000 2-gram types

out of |V|2= 844·106 possible 2-grams.
○ So, 99.96% of the possible bigrams were never used.
○ 4-grams: The output looks like Shakespeare because it is fragments of

Shakespeare...

70

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Service Engineering
Lecture 4: Natural Language Processing (3)

71

2.0 What is Natural Language Processing?

2.1 NLP and Basic Linguistic Knowledge

2.2 Morphology

2.3 NLP Applications

2.4 NLP Techniques

2.5 NLP Challenges

2.6 Evaluation, Precision and Recall

2.7 Regular Expressions

2.8 Finite State Automata

2.9 Tokenization

2.10 Language Model and N-Grams

2.11 Part-of-Speech Tagging

2.12 Word Embeddings

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing - 3
Bibliography

● D. Jurafsky, J. H. Martin, Speech and Language Processing, 2nd ed (draft), 2007,

○ Section 2.2, Finite State Automata

○ Section 3.2-3.8, Finite State Transducers

(please note that this refers to the 2nd ed.)

● D. Jurafsky, J. H. Martin, Speech and Language Processing, 3rd ed (draft)., 2019,

○ Section 3.1, N-grams

(please note that this refers to the 3rd ed.)

72

http://idiom.ucsd.edu/~bakovic/compphon/Jurafsky,%20Martin.-Speech%20and%20Language%20Processing_%20An%20Introduction%20to%20Natural%20Language%20Processing%20(2007).pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing - 3
Syllabus Questions

● Define a Finite State Automaton.

● What is a Finite State Automaton used for in NLP?

● What is the difference between a Finite State Automaton and a Finite State Transducer?

● How (in principle) is morphological parsing implemented with an FST?

● What is tokenization?

● What are the challenges for sentence tokenization and word tokenization?

● Sketch a simple approach (vanilla approach) for sentence tokenization that achieves

better results than only looking for sentence delimiters.

● What is a language model?

● What is the purpose of a language model?

● Why are we using N-grams to approximate a language model?

73

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing - 3
Images

[1] Stephen Cole Kleene 1978, photo: Konrad Jacobs, Erlangen, Copyright is MFO, [CC-SA 2.0], via Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:Kleene.jpg

[2] Noam Chomsky, 8. Dec 1977, [CC0 1.0], via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Noam_Chomsky_(1977).jpg

[3] A conversation with the ELIZA chatbot, public domain, https://commons.wikimedia.org/wiki/File:ELIZA_conversation.png

[4] Jean Marc Cote, France in 2000 year (XXI century). Future school.(1901), public domain,

https://commons.wikimedia.org/wiki/File:France_in_XXI_Century._School.jpg

[5] Thomas Bayes (d. 1761) in Terence O'Donnell, History of Life Insurance in Its Formative Years (Chicago: American Conservation Co., 1936), p.

335, public domain, https://commons.wikimedia.org/wiki/File:Thomas_Bayes.gif

74

https://commons.wikimedia.org/wiki/File:Kleene.jpg
https://commons.wikimedia.org/wiki/File:Noam_Chomsky_(1977).jpg
https://commons.wikimedia.org/wiki/File:ELIZA_conversation.png
https://commons.wikimedia.org/wiki/File:France_in_XXI_Century._School.jpg
https://commons.wikimedia.org/wiki/File:Thomas_Bayes.gif

