

Information Service Engineering

Lecture 4: Natural Language Processing - 3

Karlsruher Institut für Technologie

FIZ Karlsruhe

Leibniz Institute for Information Infrastructure

Prof. Dr. Harald Sack FIZ Karlsruhe - Leibniz Institute for Information Infrastructure AIFB - Karlsruhe Institute of Technology **Summer Semester 2021**

Information Service Engineering Last Lecture: Natural Language Processing (2)

- 2.0 What is Natural Language Processing?
- 2.1 NLP and Basic Linguistic Knowledge
- 2.2 Morphology
- 2.3 NLP Applications
- 2.4 NLP Techniques
- 2.5 NLP Challenges
- 2.6 Evaluation, Precision and Recall
- 2.7 Regular Expressions
- 2.8 Finite State Automata
- 2.9 Tokenization
- 2.10 Language Model and N-Grams
- 2.11 Part-of-Speech Tagging
- 2.12 Word Embeddings

- Phonetic, lexical, syntactic, semantic Ambiguity and Disambiguation
- Evaluation, Ground Truth, Recall, Precision, F-Measure
- Regular Expressions

Information Service Engineering Lecture 4: Natural Language Processing (3)

- 2.0 What is Natural Language Processing?
- 2.1 NLP and Basic Linguistic Knowledge
- 2.2 Morphology
- 2.3 NLP Applications
- 2.4 NLP Techniques
- 2.5 NLP Challenges
- 2.6 Evaluation, Precision and Recall
- 2.7 Regular Expressions

2.8 Finite State Automata

- 2.9 Tokenization
- 2.10 Language Model and N-Grams
- 2.11 Part-of-Speech Tagging
- 2.12 Word Embeddings

3

Regular Expressions and Finite State Automata (FSA)

• Regular Expressions

- are one way to characterize a Regular Language as e.g. /baa+!/
- In general Regular Languages can be characterized via

Stephen Cole Kleene (1909 - 1994)

Noam Chomsky (*1928)

Finite State Automata (FSA)

- A Finite State Automaton is an abstract model of a computer which
 - reads an input string,
 - and changes its internal state
 depending on the current input symbol.
- An FSA can either **accept** or **reject** the input string.
- Every automaton defines a **language**, i.e. the set of strings it accepts.

Finite State Automata (FSA)

- Finite State Automata are composed of
 - Vertices (nodes)
 - Arcs (links)

• What words (strings) can be recognized by this FSA example?

o baa! / baaa! / baaaaa! / baaaaaa! / ..

- Matching RE?
 - **/baa+!/**

Finite State Automata (FSA)

- Strings accepted:
 - o baa!
 - baaaaa!
- Strings not accepted:
 - abc
 - o babb
 - !bcd

	Input		
State	а	b	l
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q ₃	Ø	Ø
q ₃	q_3	Ø	q ₄
q ₄	Ø	Ø	Ø

Formalisation of a Finite State Automaton (FSA)

- FSA $A = (Q, \Sigma, q_0, F, \delta(q,i))$, with
- **Q**: finite set $\{q_0, q_1, q_2, ..., q_{N-1}\}$ of N states
- Σ: finite input alphabet of symbols
- **q**₀: the designated start state
- F: the set of final states, $F \subseteq Q$
- $\delta(q,i)$: the transition function $\delta: Q \times \Sigma \rightarrow Q$, $\delta(q,i) = q'$ for $q, q' \in Q$, $i \in \Sigma$

You denote the transition function δ in terms of a state transition table

Formalisation of "Sheeptalk"

• $Q = \{q_0, q_1, q_2, q_3, q_4\}$

- $\Sigma = \{a, b, !\}$
- q₀: the start state
- $F = \{q_4\}$
- $\delta(q,i)$: defined by state transition table

	Input		
State	а	b	I
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q ₃	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

D-RECOGNIZE Algorithm (step1)

	Input		
State	а	b	1
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q ₃	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

D-RECOGNIZE Algorithm (step2)

	Input		
State	а	b	!
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q_3	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

D-RECOGNIZE Algorithm (step3)

	Input		
State	а	b	1
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q ₃	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

D-RECOGNIZE Algorithm (step4)

	Input		
State	а	b	!
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q_3	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

D-RECOGNIZE Algorithm (step4)

State Transition Table

	Input		
State	а	b	I
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q ₃	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

Finite State Automata (FSA) for "Sheeptalk"

- FSA A = (Q, Σ , q₀, F, δ (q,i)), with
 - $\circ \quad \mathbf{Q} = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}$
 - 0 Σ = {a,b,!}
 - \circ **q**₀: the start state
 - $\circ \quad \mathbf{F} = \{\mathbf{q}_4\}$
 - $\delta(q,i)$: defined by state transition table —

	Input		
State	а	b	l
q ₀	Ø	q ₁	Ø
q ₁	q ₂	Ø	Ø
q ₂	q_3	Ø	Ø
q ₃	q ₃	Ø	q ₄
q ₄	Ø	Ø	Ø

Formal Language

- A model that can both generate and recognize all and only those strings given by its definition.
- An automaton can describe an infinite set with a closed form.
- "Sheeptalk" model "m":
 - \circ **\Sigma** = {b,a,!} Alphabet
 - L(m) = formal language characterized by "m" Ο
 - $L(m) = \{baa!, baaa!, baaaa!,\}$ Ο
 - Ο

Usually it holds that $L \subset \sum^*$ The Kleene closure \sum^* ('sigma star') is the (infinite) set of all strings that can be formed from Σ .

Formal Language vs. Natural Language

- A formal language is not a natural language.
- But we can use formal languages to model parts of natural languages,
 - such as e.g. **phonology**, **morphology** or syntax.

Another (simple) FSA Example

• Modelling amounts of money (e.g. 0-99 cent):

Non Deterministic FSAs

Non Deterministic FSAs with ε-Transitions

State Transition Table

	Input			
State	а	b	l	3
q ₀	Ø	q ₁	Ø	Ø
q ₁	q ₂	Ø	Ø	Ø
q ₂	q ₃	Ø	Ø	Ø
q ₃	Ø	Ø	q ₄	q ₂
q ₄	Ø	Ø	Ø	Ø 20

Morphological Parsing

Finite State Morphological Parser

- To construct a morphological par
 - 1. Lexicon: list of stems + type and affixes .
 - 2. **Morphotactic rules**: model of **morpheme ordering**, e.g. *plural affix -s follows noun*.
 - 3. **Orthographic rules**: spelling rules for morpheme combinations, e.g. $y \rightarrow ie$ that changes city + -s into cities.

= part-of-speech, as e.g. noun, verb, adjective, etc.

22

FSA for Morphology

Union: Merging Automata

grace,
 dis-grace,
 grace-ful,
 dis-grace-ful

Simple FSA for English Nominal Inflection

• Some irregular words require stem changes, e.g. *goose - geese*.

reg-noun	irreg-pl-noun	irreg-sg-noun	plural
dog	geese	goose	-S
cat	sheep	sheep	
aardvark	mice	mouse	

Expanded FSA for a Few English Nouns

Recognition vs. Analysis

- FSAs can recognize (**accept**) a string, but they don't tell us its internal structure.
- We need a machine that maps (**transduces**) the input string into an output string that encodes its structure:

Finite State Transducer (FST)

- A Finite State Transducer maps between two sets of symbols.
- 2-tape FSA that recognizes or generates pairs of strings.
- A FST defines relations between sets of strings.

Formalisation of a Finite State Transducer (FST)

- A finite state transducer T = (Q, Σ , Δ , q0, F, δ , σ) consists of:
 - **Q**: finite set $\{q_0, q_1, q_2, ..., q_{N-1}\}$ of N states
 - **Σ**: finite set of input symbols
 - **Δ:** finite set of output symbols
 - \circ **q**₀: the designated start state
 - **F**: the set of final states, $F \subseteq Q$
 - \circ $\delta(q,i)$: the transition function

 δ : Q x $\Sigma \rightarrow 2^{Q}$, δ (q,i) = Q' for q \in Q, Q' \subseteq Q, i $\in \Sigma$

σ(q,i): the output function
 σ: Q x Σ → Δ^{*}, σ(q,i) = ω for q ∈ Q, i ∈ Σ, ω ∈ Δ^{*}

Formalisation of a Finite State Transducer (FST)

- A finite state transducer T = $L_{in} \times L_{out}$ defines a relation between two regular languages L_{in} and L_{out}:
- L_{in} = {cat, cats, fox, foxes, ...}
 L_{out} = {cat+N+Sg, cat+N+Pl, fox+N+Sg, fox+N+Pl ...}
- **T** = { <cat, cat+N+Sg>, <cats, cat+N+Pl>, <fox, fox+N+Sg>, <foxes, fox+N+Pl> } FST as "translator":
 - Reads a string (L_{in}) and outputs another string (L_{out})
 Morphological parsing:
 - Surface form (input); Lexical form (output)

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastruct

Finite State Transducers for Morphological Parsing

- Two tapes
 - Upper (lexical) tape: output alphabet Δ
 - cat + N + Pl
 - \circ Lower (surface) tape: input alphabet Σ
 - cats

Finite State Transducers for Morphological Parsing

Lexical form : surface form ► goose:geese ► g:g o:e o:e s:s e:e
 Default pairs (g:g) vs. Feasible pairs (e.g., o:e)

Finite State Transducers for Morphological Parsing

• We indicate morpheme boundaries (^) and word boundaries (#).

FST and Orthographic Rules

- English often requires spelling changes at morpheme boundaries.
- Introduction of **orthographic rules**, as e.g.

Name	Orthographic Rule	
Consonant doubling	Consonant doubled before -ing/-ed	beg / begging
E deletion	leletion Silent e dropped before -ing and -ed	
E insertion E added after -s, -z, -x, -cgsh before -s		fox / foxes
Y replacement -y changes to -ie before -s, -i before -ed		try / tries
K insertion Verbs ending with vowel + -c ad -k		panic / panicked

Intermediate Representations

- English plural -s:
 - \circ cat \Rightarrow cats, dog \Rightarrow dogs
 - but: fox \Rightarrow foxes, buzz \Rightarrow buzzes
- Idea: We define an intermediate representation which captures morpheme boundaries (^) and word boundaries (#):

0	Lexical form:	cat+N+PI	fox+N+PI
0	Intermediate		
	representation:	cat^s#	fox^s#
0	Surface form:	cats	foxes

• Intermediate-to-Surface Spelling Rule: If plural 's' follows a morpheme ending in 'x', 'z' or 's', insert 'e'.

FST and Orthographic Rules

More FST Applications

Welcome to

EEEEEE	LL	IIII	ZZZZZZ	AAA	AAA
EE	LL	ΙI	ZZ	AA	AA
EEEEE	LL	ΙI	ZZZ	AAAA	AAAA
EE	ĹĹ	ΙI	ZZ	AA	AA
EEEEEE	LLLLL	IIII	ZZZZZZ	AA	AA

Eliza is a mock Rogerian psychotherapist.

The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ? YOU: Men are all alike. ELIZA: What is the connection, do you suppose ? YOU: They're always bugging us about something or other. ELIZA: Can you think of a specific example ? YOU: Well, my boyfriend made me come here. ELIZA: Is it important to you that your boyfriend made you come here ? YOU: He says I'm depressed much of the time. ELIZA: I am sorry to hear that you are depressed. YOU: It's true. I am unhappy. ELIZA: Can you explain what made you unhappy ? YOU:

ELIZA as an FST Cascade

Karlsruher Institut für Technologie FIZ Karlsruhe Leibniz Institute for Information Infrastructure

- Human: You don't argue with me.
- Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU
- 1. Replace **you** with **I** and **me** with **you**:
 - "You don't argue with me."
 - · I DON'T ARGUE WITH YOU.
- 2. Replace *<string>* with **Why do you think** *<string>*:
 - · WHY DO YOU THINK I DON'T ARGUE WITH YOU

Information Service Engineering Lecture 4: Natural Language Processing (3)

- 2.0 What is Natural Language Processing?
- 2.1 NLP and Basic Linguistic Knowledge
- 2.2 Morphology
- 2.3 NLP Applications
- 2.4 NLP Techniques
- 2.5 NLP Challenges
- 2.6 Evaluation, Precision and Recall
- 2.7 Regular Expressions
- 2.8 Finite State Automata
- 2.9 Tokenization
- 2.10 Language Model and N-Grams
- 2.11 Part-of-Speech Tagging
- 2.12 Word Embeddings

Tokenization

- **Tokenization** is the process of breaking a stream of text up into words, phrases, symbols, or other meaningful elements.
- Distinguish
 - Word tokenization
 - Sentence tokenization
- At first glance, English word tokenization might seem simple, but...

Word Tokenization

• English word tokenization might simply make use of white spaces...

Latest figures from the US government show the trade deficit with China reached an all-time high of \$365.7bn (£250.1bn) last year. By February this year it had already reached \$57bn.

• Tokenization can easily be implemented via **regular expressions**:

Word Tokenization

Inf

*	RegExr v3.1	New Fork	Save (cmd-	5)																b	y gski	nner	GitHub	👤 Si	ign In							Leibniz Ins
∎	Expression																			0	Java	Script		Flag	S v							
)	/ \W*\s+ /{	3																														
	Text																					30	matche	s (0.3n	ns)							
} }	Latest f	igures fro February	m the US this year	governn it had	ment sl	how th ady re	e tra eached	ade d d \$57	defici 7bn <mark>.</mark> -	it wi	ith C	China	reac	hed a	an al	l-tim	ne hig	gh o f	\$365.	7bn	(£2	50.1	bn)_l	.ast								
	Tools																		Replac	e L	.ist	Detail	s Ex	plain	×							
	\n																								0							
	Latest figures from the US governmen show the trade deficit with China	t																														ht
	reached																									ar	lsruł	ne Ir	nstitu	ute of	Tech	nology

http://regexr.com/

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

Latest figures from the US government show the trade deficit with China reached an all-time high of \$365.7bn (£250.1bn) last year. By February this year it had already reached \$57bn.

Intended result:

Latest figures from the US government show the trade deficit with China reached an all time high of 365.7 bn (£250.1 bn) last year. By February this year it had already reached 57 bn.

Word Tokenization

- Issues related to tokenization:
 - Separators: punctuations
 - Exceptions: "m.p.h", "Ph.D"
 - Expansions: "we're" = "we are"
 - Multi-words expressions: "New York"
 - Numbers:
 - Dates: 3/20/91
 - More Dates: 55 B.C.
 - IP addresses: **192.168.0.1**
 - Phone numbers: (800) 234-2333

Segmentation = Tokenization

• Word segmentation: separation of the morphemes but also tokenization for languages without 'space' character.

- *Chinese, Japanese*: sentences but not words are delimited.
- Thai and Lao: phrases and sentences but not words are delimited.
- *Vietnamese*: syllables but not words are delimited.

Sentence Splitting

- Dividing a string of written language into its component sentences.
- In **English** and some other languages, using **punctuation**, particularly the *full stop/period character (.?!)* is a reasonable approximation.
- Non trivial problem, since in English the full stop character also is used for abbreviations or numbers.
 - Examples: "Mr.", "4.5"

2. Natural Language Processing / 2.9 Tokenization

Sentence Splitting

- "Vanilla" Approach
 - If it's a **period**, it ends a sentence.
 - If the **preceding token** is in the **hand-compiled list of abbreviations**, then it doesn't end a sentence.
 - If the **next token** is **capitalized**, then it ends a sentence.
- Capable of detecting ca. 95% of sentence boundaries.
- Alternative Approaches:
 - Based on **regular expressions**
 - Based on **rules** or **machine learning**, e.g. binary classifiers that decide whether a certain punctuation is part of a word or not.

Information Service Engineering Lecture 4: Natural Language Processing (3)

- 2.0 What is Natural Language Processing?
- 2.1 NLP and Basic Linguistic Knowledge
- 2.2 Morphology
- 2.3 NLP Applications
- 2.4 NLP Techniques
- 2.5 NLP Challenges
- 2.6 Evaluation, Precision and Recall
- 2.7 Regular Expressions
- 2.8 Finite State Automata
- 2.9 Tokenization
- 2.10 Language Model and N-Grams
- 2.11 Part-of-Speech Tagging
- 2.12 Word Embeddings

2. Natural Language Processing / 2.9 Language Model and N-Grams

Word Prediction

- "To be or not to..."
- "The pen is mightier than the..."
- "You can't judge a book by..."

- "Es irrt der Mensch, solang' er"
- "Die Botschaft hör ich wohl, allein mir fehlt ..."

2. Natural Language Processing / 2.9 Language Model and N-Grams

Human Prediction

- How do humans predict words?
 - Domain knowledge, as e.g. red blood vs. hat
 - Syntactic knowledge, as e.g. The ... <adjective | noun>
 - Lexical knowledge, as e.g.
 Baked potato vs. steak

• Claim: A useful part of the knowledge needed to allow *Word Prediction* can be captured using simple statistical techniques.

N-gram Models

- Word Prediction can be formalized with probabilistic N-gram models:
 - **2-gram (bigram):** (to, be), (be, or), (or, not), (not, to)
 - **3-gram (trigram)**: (to, be, or), (be, or, not), (or, not, to)
- An **N-gram** is an N-Token of words.
- In an N-gram model, the last word w_n depends only on the previous n-1 words (w₁,...w_{n-1}) (Markov assumption)
- and thus, the last word w_n will be computed from the previous n-1 words (w₁,...w_{n-1}).
- Statistical models of word sequences are called Language Models (LM).

Speech Recognition

• "Computers can recognize speech."

"Computers can wreck a nice peach."

- "Give peace a chance." "Give peas a chance."
- "ice cream."

"I scream."

"Two birds are flying."
 "Two beards are flying."

2. Natural Language Processing / 2.9 Language Model and N-Grams

Handwriting Recognition

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Basic Probability Theory

- Trial:
 - Throwing a dice, predicting a word.
- Sample space Ω :
 - The set of all possible outcomes
 (all numbers in a lottery; all words in Shakespeare's plays).
- **Event** $\omega \subseteq \Omega$:
 - An actual outcome (a subset of Ω) (predicting 'the', throwing a "3",...).

The Probability of Events

- Kolmogorov Axioms:
 - 1. Each event has a probability between 0 and 1.

 $0 \leq P(\omega \subseteq \Omega) \leq 1$

The null event has probability 0.
 The probability that any event happens is 1.

 $P(\emptyset) = 0$ and $P(\Omega) = 1$

3. The probability of all disjoint events sums to 1.

$$\sum_{\omega_i \subseteq \Omega} P(\omega_i) = 1 \quad \forall j \neq i : \omega_i \cap \omega_j = \emptyset, \ \bigcup_i \omega_i = \Omega$$

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Statistical Language Model

• Finding the probability of a sentence or a sequence of words:

$$P(S) = P(w_1, w_2, \cdots, w_n)$$

- Example:
 - "Computers can recognize speech."
 - P(Computer, can, recognize, speech)
- Rank possible sentences:
 - P("Today is Wednesday") > P("Wednesday today is")
 - P("Today is Wednesday") > P("Today is book")

2. Natural Language Processing / 2.10 Language Model and N-Grams

Conditional Probability

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Conditional Probability P(B|A)

that **event B** occurs under the assumption that **event A** has already occurred.

 $P(A,B) = \underline{P(A)} \cdot \underline{P(B|A)}$

Bayes Theorem

The probability that **event A occurs followed by event B** equals the probability that event A occurs and event B occurs under the assumption that event A has occurred.

$P(A, B, C, D) = P(A) \cdot P(B|A) \cdot P(C|A, B) \cdot P(D|A, B, C)$

Extension to multiple events via chain rule

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Thomas Bayes (1700-1761)

Conditional Probability

$$P(S) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdots P(w_n|w_1, \cdots, w_{n-1})$$
$$P(S) = \prod_{i=1}^n P(w_i|w_1, \cdots, w_{i-1})$$

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.

- $P(to be or not) = P(to) \cdot$ $P(be|to) \cdot$ $P(or|to,be) \cdot$ P(not|to,be,or)
- But how do we determine the **probability of the occurrence of words**?

Conditional Probability

$$P(S) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdots P(w_n|w_1, \cdots, w_{n-1})$$
$$P(S) = \prod_{i=1}^n P(w_i|w_1, \cdots, w_{i-1})$$

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.

- $P(to be or not) = P(to) \cdot$ $P(be|to) \cdot$ $P(or|to,be) \cdot$ P(not|to,be,or)
- But how do we determine the **probability of the occurrence of words**?

2. Natural Language Processing / 2.10 Language Model and N-Grams

Corpora

- **Probabilities** are based on **counting things**.
- Idea: Count the occurrence of words in large collections of texts (=corpora).
- A corpus is a computer-readable collection of text or speech. Ideally, naturally-occurring corpora serve as realistic samples of a language.
 - Corpus of Contemporary American English: 520m words, US, 1990-2015
 - The **British** National Corpus: 100m words, UK, 1991-1994
 - The International Corpus of English:
 - The Google N-gram Corpus
 - N-grams from printed sources, 1500-2008, in English, Chinese, French, German, Hebrew, Italian, Russian, or Spanish, 1,024,908,267,229 words.

23 local corpora, 1m words each

http://www.corpusdata.org/ http://www.natcorp.ox.ac.uk/ https://books.google.com/ngrams https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.10 Language Model and N-Grams Google Books Ngram Viewer • **FIZ** Karlsruhe Graph these comma-separated phrases: capitalism,communism,imperialism,democracy case-insensitive Leibniz Institute for Information Infrastructure from the corpus British English (2009) with smoothing of 3 Search lots of books between 1800 and 2000 \odot 0.00500% 0.00450% 0.00400% 0.00350% · democracy 0.00300% 0.00250% capitalism 0.00200% 0.00150% 0.00100% imperialism communism 0.00050% -0.00000% -1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 (click on line/label for focus) Search in Google Books: 1800 - 1936 1937 - 1987 1988 - 1991 1992 - 1996 1997 - 2000 capitalism English https://books.google.com/ngra64/3 1800 - 1917 1918 - 1981 1982 - 1987 1988 - 1993 1994 - 2000 communism English

Complexity of a Statistical Language Model

$$P(S) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdots P(w_n|w_1, \cdots, w_{n-1})$$
$$P(S) = \prod_{i=1}^n P(w_i|w_1, \cdots, w_{i-1})$$

- **Complexity**: $O(|V|^{n^*})$ V...Vocabulary, n^* ...maximum sentence length
 - 475,000 main headwords in *Webster's Third New International Dictionary*
 - Average English sentence length: 14.3 words
 - A rough estimate: $O(475,000^{14}) \sim 3.38 \cdot 10^{66} \text{ TB}$
- By applying an **N-gram model**, we make the model more compact: $O(475,000^{\text{N}})$.

N-gram Models

- The intuition of the **N-gram model** is that
 - instead of computing the probability of a word given its entire history,
 - we can **approximate** the history **by just the last few words**.
- For the **bigram model** we approximate the probability of a word given all its previous words by using **only the conditional probability of its preceding word (Markov assumption)**:

$$P(w_n|w_1,\cdots,w_{n-1}) \approx P(w_n|w_{n-1})$$

Markov Assumption

• Using the **Markov Assumption** to compute the probability of a text sequence for the bigram model:

$$P(S) = \prod_{i=1}^{n} P(w_i | w_1, \cdots, w_{i-1})$$

$$\blacksquare$$

$$P(S) = \prod_{i=1}^{n} P(w_i | w_{i-1})$$

2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Model

• Unigram:
$$P(S) = \prod_{i=1} P(w_i)$$

• Bigram:
$$P(S) = \prod_{i=1}^{n} P(w_i | w_{i-1})$$

• Trigram:
$$P(S) = \prod_{i=1}^{n} P(w_i | w_{i-1}, w_{i-2})$$

n

n

• N-gram: $P(S) = \prod_{i=1}^{n} P(w_i | w_1, \cdots, w_{i-1})$

Maximum Likelihood Estimation

- How to estimate N-gram probabilities?
- Maximum Likelihood Estimation (MLE)
 - A method of estimating the parameters of a statistical model given **observations**.
 - By finding the parameter values that maximize the likelihood of making the observations given the parameters.
- The MLE for the parameters of an N-gram model is computed by normalizing counts from a corpus.

$$P(w_n|w_{n-1}) = \frac{\#(w_{n-1}w_n)}{\sum_w \#(w_{n-1}w)} = \frac{\#(w_{n-1}w_n)}{\#w_{n-1}}$$

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Markov Assumption and Maximum Likelihood Estimation

N-gram Model - Generating Shakespeare

- Unigram: To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
 Hill he late speaks; or! a more to leg less first you enter.
- Bigram: Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
 What means, sir. I confess she? then all sorts, he is trim, captain
- Trigram: Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
 This shall forbid it should be branded, if renown made it empty.
- 4-gram: King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; It cannot be but so.

How to generate "plausible" Text from N-grams

- Example for 2-grams (for n-grams simply adapt).
- From your corpus:
 - 1. Choose a random 2-gram with $(<s>,w_1)$
 - 2. Next choose another random n-gram (w_1, w_2)
 - 3. Continue choosing (w_i, w_{i+1}) , until you choose $(w_n, </s>)$ as the last word.
 - 4. Then tie all new words $(\langle s \rangle, w_1, ..., w_n, \langle s \rangle)$ together in a sentence.
- Why does it work?
 - |Shakespeare Corpus|=884,647 tokens, |V|=29,066
 - Shakespeare produced only 300,000 2-gram types out of |V|²= 844·10⁶ possible 2-grams.
 - So, 99.96% of the possible bigrams were never used.
 - 4-grams: The output looks like Shakespeare because it is fragments of Shakespeare...

Information Service Engineering Lecture 4: Natural Language Processing (3)

- 2.0 What is Natural Language Processing?
- 2.1 NLP and Basic Linguistic Knowledge
- 2.2 Morphology
- 2.3 NLP Applications
- 2.4 NLP Techniques
- 2.5 NLP Challenges
- 2.6 Evaluation, Precision and Recall
- 2.7 Regular Expressions
- 2.8 Finite State Automata
- 2.9 Tokenization
- 2.10 Language Model and N-Grams
- 2.11 Part-of-Speech Tagging
- 2.12 Word Embeddings

2. Natural Language Processing - 3 Bibliography

- D. Jurafsky, J. H. Martin, <u>Speech and Language Processing, 2nd ed (draft)</u>, 2007,
 - Section 2.2, *Finite State Automata*
 - Section 3.2-3.8, *Finite State Transducers*

(please note that this refers to the 2nd ed.)

- D. Jurafsky, J. H. Martin, <u>Speech and Language Processing, 3rd ed (draft).</u>, 2019,
 - Section 3.1, *N*-grams

(please note that this refers to the 3rd ed.)
2. Natural Language Processing - 3 Syllabus Questions

- Define a Finite State Automaton.
- What is a Finite State Automaton used for in NLP?
- What is the difference between a Finite State Automaton and a Finite State Transducer?
- How (in principle) is morphological parsing implemented with an FST?
- What is tokenization?
- What are the challenges for sentence tokenization and word tokenization?
- Sketch a simple approach (vanilla approach) for sentence tokenization that achieves better results than only looking for sentence delimiters.
- What is a language model?
- What is the purpose of a language model?
- Why are we using N-grams to approximate a language model?

2. Natural Language Processing - 3 Images

- [1] Stephen Cole Kleene 1978, photo: Konrad Jacobs, Erlangen, Copyright is MFO, [CC-SA 2.0], via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Kleene.jpg
- [2] Noam Chomsky, 8. Dec 1977, [CC0 1.0], via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Noam_Chomsky (1977).jpg
- [3] A conversation with the ELIZA chatbot, public domain, <u>https://commons.wikimedia.org/wiki/File:ELIZA_conversation.png</u>
- [4] Jean Marc Cote, France in 2000 year (XXI century). Future school.(1901), public domain, https://commons.wikimedia.org/wiki/File:France_in_XXI_Century_School.jpg
- [5] Thomas Bayes (d. 1761) in Terence O'Donnell, History of Life Insurance in Its Formative Years (Chicago: American Conservation Co., 1936), p. 335, public domain, <u>https://commons.wikimedia.org/wiki/File:Thomas_Bayes.gif</u>