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Information Service Engineering
Last Lecture: Natural Language Processing (2)
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● Phonetic, lexical, syntactic, 
semantic Ambiguity and 
Disambiguation

● Evaluation, Ground Truth, Recall, 
Precision, F-Measure

● Regular Expressions
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Information Service Engineering
Lecture 4: Natural Language Processing (3)
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2. Natural Language Processing / 2.8 Finite State Automata

Regular Expressions and Finite State Automata (FSA)

● Regular Expressions

○ are one way to characterize a Regular Language

as e.g. /baa+!/ 

● In general Regular Languages can be characterized via

○ Regular expressions

○ Finite State Automata

○ Regular grammars

4

Kleene’s Theorem

Stephen Cole Kleene
(1909 - 1994)

Chomsky

Noam Chomsky
(*1928)
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

● A Finite State Automaton is an abstract model of a computer which 

○ reads an input string, 

○ and changes its internal state 

depending on the current input symbol.

● An FSA can either accept or reject the input string.

● Every automaton defines a language, i.e. the set of strings it accepts.

5
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

● Finite State Automata are composed of

○ Vertices (nodes)

○ Arcs (links)

● What words (strings) can be recognized by this FSA example?

○ baa!  /  baaa!  /  baaaa!  /  baaaaa!  /  ..

● Matching RE? 

○ /baa+!/

6

start state accepting state
state transition
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● Strings accepted:

○ baa!

○ baaaaa!

● Strings not accepted:

○ abc

○ babb

○ !bcd
7
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2. Natural Language Processing / 2.8 Finite State Automata

Formalisation of a Finite State Automaton (FSA)

● FSA   A = (Q, Σ, q
0
, F, 𝜹(q,i)), with

● Q: finite set {q
0
,q

1
, q

2
, …, q

N-1
} of N states

● Σ: finite input alphabet of symbols

● q
0
: the designated start state

● F: the set of final states, F⊆Q

● 𝜹(q,i): the transition function 

𝜹: Q x Σ → Q , 

𝜹(q,i) = q’ for q, q’∈Q , i∈Σ 

8

You denote the transition 
function 𝜹 in terms of a 
state transition table
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2. Natural Language Processing / 2.8 Finite State Automata

Formalisation of “Sheeptalk”

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table● Q = {q
0
,q

1
, q

2
,q

3
,q

4
}

● Σ = {a,b,!}

● q
0
: the start state

● F = {q
4
}

● 𝜹(q,i): defined by state transition table

9
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2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step1)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

10



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step2)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

11
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2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step3)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

12
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2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step4)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

13
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2. Natural Language Processing / 2.8 Finite State Automata

D-RECOGNIZE Algorithm (step4)

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

index

current state

● q
4
 is the final state, string is accepted.

14
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Automata (FSA) for “Sheeptalk”

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q3 ∅ ∅

q3 q3 ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● FSA   A = (Q, Σ, q
0
, F, 𝜹(q,i)), with

○ Q = {q
0
,q

1
, q

2
,q

3
,q

4
}

○ Σ = {a,b,!}

○ q
0
: the start state

○ F = {q
4
}

○ 𝜹(q,i): defined by state transition table

15
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2. Natural Language Processing / 2.8 Finite State Automata

Formal Language

● A model that can both generate and recognize all and only those 

strings given by its definition.

● An automaton can describe an infinite set with a closed form.

● “Sheeptalk” model “m”:

○ ∑ = {b,a,!} - Alphabet

○ L(m) = formal language characterized by „m“

○ L(m) = {baa!,baaa!,baaaa!,....}

○ Usually it holds that L⊂∑*

16

The Kleene closure ∑* (‘sigma star’) 
is the (infinite) set of all strings that 
can be formed from ∑.



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

Formal Language vs. Natural Language

● A formal language is not a natural language.

● But we can use formal languages to model parts of natural 

languages, 

○ such as e.g. phonology, morphology or syntax.

17
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2. Natural Language Processing / 2.8 Finite State Automata

Another (simple) FSA Example 

● Modelling amounts of money (e.g. 0-99 cent):

18
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2. Natural Language Processing / 2.8 Finite State Automata

Non Deterministic FSAs

Input

State a b !

q0 ∅ q1 ∅

q1 q2 ∅ ∅

q2 q2,q3 ∅ ∅

q3 ∅ ∅ q4

q4 ∅ ∅ ∅

State Transition Table

● 𝜹(q,i): the transition function for NFAs 

𝜹: Q x Σ → 2Q

𝜹(q,i) = Q’ for q∈ Q , Q’ ⊆ Q , i ∈ Σ 

ε

19
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2. Natural Language Processing / 2.8 Finite State Automata

Non Deterministic FSAs with ε-Transitions 

Input

State a b ! ε

q0 ∅ q1 ∅ ∅

q1 q2 ∅ ∅ ∅

q2 q3 ∅ ∅ ∅

q3 ∅ ∅ q4 q2

q4 ∅ ∅ ∅ ∅

State Transition Table

ε
● 𝜹(q,i): the transition function for NFAs 

𝜹: Q x Σε → 2Q , Σε 
=

 
Σ ∪ {ε}, Σ ∩ {ε} = ∅

𝜹(q,i) = Q’ for q∈ Q , Q’ ⊆ Q , i ∈ Σε 
20
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2. Natural Language Processing / 2.8 Finite State Automata

Morphological Parsing

Input Word Output Analysis

Morphological 
Parser

cats cat +N +Pl

21

surface form lexical form
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Morphological Parser

● To construct a morphological parser, we need:

1. Lexicon: list of stems + type and affixes .

2. Morphotactic rules: model of morpheme ordering, 

e.g. plural affix -s follows noun. 

3. Orthographic rules: spelling rules for morpheme combinations, 

e.g. y → ie that changes city + -s into cities.

22

= part-of-speech, 
  as e.g. noun, verb, adjective, etc. 
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2. Natural Language Processing / 2.8 Finite State Automata

FSA for Morphology

q0 q1q1

stem● grace: 

● dis-grace:

● grace-ful:

● dis-grace-ful:

q1 q1q2

stem

q0

prefix

q1 q1q2

suffix

q0

stem

q2 q1q3

stem

q1

prefix

q0

suffix

23
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2. Natural Language Processing / 2.8 Finite State Automata

Union: Merging Automata

● grace, 

dis-grace,

grace-ful,

dis-grace-ful

q2 q1q3

stem

q1

prefix

q0

suffix

ε

q2

24



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

q2 q2

2. Natural Language Processing / 2.8 Finite State Automata

Simple FSA for English Nominal Inflection

q0 q1 q2

regular noun plural -s

irregular 
plural noun

irregular 
singular noun

reg-noun irreg-pl-noun irreg-sg-noun plural

dog geese goose -s

cat sheep sheep

aardvark mice mouse

● Some irregular words require stem 
changes, e.g. goose - geese.

25
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2. Natural Language Processing / 2.8 Finite State Automata

Expanded FSA for a Few English Nouns

d

o

g

a

c

t

ε

g o o

e
e

s

s

e

s

26
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2. Natural Language Processing / 2.8 Finite State Automata

Recognition vs. Analysis

● FSAs can recognize (accept) a string, but they don’t tell us its internal 

structure.

● We need a machine that maps (transduces) the input string into an 

output string that encodes its structure:

c a t +N +Pl
Lexical

(output)

c a t s  
Surface
(input)

27
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducer (FST)

● A Finite State Transducer maps between two sets of symbols.

● 2-tape FSA that recognizes or generates pairs of strings.

● A FST defines relations between sets of strings.

28

input output
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2. Natural Language Processing / 2.8 Finite State Automata

● A finite state transducer T = (Q, Σ, Δ, q0, F, 𝜹, σ) consists of:

○ Q: finite set {q
0
,q

1
, q

2
, …, q

N-1
} of N states

○ Σ: finite set of input symbols

○ Δ: finite set of output symbols

○ q
0
: the designated start state

○ F: the set of final states, F ⊆ Q

○ 𝜹(q,i): the transition function 

𝜹: Q x Σ → 2Q , 𝜹(q,i) = Q’ for q∈Q , Q’⊆Q , i∈Σ 

○ σ(q,i): the output function

σ: Q x Σ →Δ*  , σ(q,i) = ω for q∈Q , i ∈ Σ , ω∈Δ*

Formalisation of a Finite State Transducer (FST)

29
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2. Natural Language Processing / 2.8 Finite State Automata

● A finite state transducer T = L
in

 ⨉ L
out

 defines a relation between two 

regular languages L
in

 and L
out

:

● L
in

 = {cat, cats, fox, foxes, ...}

● L
out

 = {cat+N+Sg, cat+N+Pl, fox+N+Sg, fox+N+Pl ...}

Formalisation of a Finite State Transducer (FST)

● T = { <cat, cat+N+Sg>, <cats, cat+N+Pl>, <fox, fox+N+Sg>,

 <foxes, fox+N+Pl> }

30

FST as “translator”:
- Reads a string (Lin) and 

outputs another string (Lout)
- Morphological parsing: 

Surface form (input); 
Lexical form (output)
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

● Two tapes

○ Upper (lexical) tape: output alphabet Δ
■ cat +N +Pl

○ Lower (surface) tape: input alphabet Σ
■ cats 

c a t +N +PlLexical

c a t s  Surface

31
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

● Lexical form : surface form ► goose:geese ► g:g o:e o:e s:s e:e
○ Default pairs (g:g) vs. Feasible pairs (e.g., o:e) 

32
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2. Natural Language Processing / 2.8 Finite State Automata

Finite State Transducers for Morphological Parsing

33

● We indicate morpheme boundaries (^) and word boundaries (#).



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.8 Finite State Automata

FST and Orthographic Rules

● English often requires spelling changes at morpheme boundaries.

● Introduction of orthographic rules, as e.g.

Name Orthographic Rule Example

Consonant doubling Consonant doubled before -ing/-ed beg / begging

E deletion Silent e dropped before -ing and -ed make / making

E insertion E added after -s, -z, -x, -cg. -sh before -s fox / foxes

Y replacement -y changes to -ie before -s, -i before -ed try / tries

K insertion Verbs ending with vowel + -c ad -k panic / panicked

34
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2. Natural Language Processing / 2.8 Finite State Automata

Intermediate Representations

● English plural -s: 
○ cat ⇒ cats, dog ⇒ dogs 
○ but: fox ⇒ foxes, buzz ⇒ buzzes 

● Idea: We define an intermediate representation which 
captures morpheme boundaries (^) and word boundaries (#): 

○ Lexical form: cat+N+Pl fox+N+Pl 
○ Intermediate 

representation: cat^s# fox^s# 
○ Surface form: cats foxes 

● Intermediate-to-Surface Spelling Rule: 
If plural ‘s’ follows a morpheme ending in ‘x’,‘z’ or ‘s’, insert ‘e’.

35
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2. Natural Language Processing / 2.8 Finite State Automata

FST and Orthographic Rules 

f o x +N +PlLexical

f o x ^ s #Intermediate

f o x e sSurface

Lexicon FST

FST
1
,...,FST

n
orthographic rules

36
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2. Natural Language Processing / 2.8 Finite State Automata

More FST Applications

http://www.masswerk.at/elizabot/ 37

http://www.masswerk.at/elizabot/
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2. Natural Language Processing / 2.8 Finite State Automata

ELIZA as an FST Cascade 

● Human: You don't argue with me.
● Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU

● 1. Replace you with I and me with you:

○ “You don't argue with me.”
○ I DON’T ARGUE WITH YOU.

● 2. Replace <string> with Why do you think <string>:

○ WHY DO YOU THINK I DON’T ARGUE WITH YOU

38
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Information Service Engineering
Lecture 4: Natural Language Processing (3)
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2. Natural Language Processing / 2.9 Tokenization

Tokenization

● Tokenization is the process of breaking a stream of text up into 
words, phrases, symbols, or other meaningful elements.

● Distinguish

○ Word tokenization

○ Sentence tokenization

● At first glance, English word tokenization might seem simple, but...

40
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2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● English word tokenization might simply make use of white spaces…

● Tokenization can easily be implemented via regular expressions:

○ \W*\s+

Latest figures from the US government show the trade deficit with 
China reached an all-time high of $365.7bn (£250.1bn) last year. By 
February this year it had already reached $57bn.

Anything 
non-alpha-
numeric

Followed by 
white spaces

http://regexr.com/ 

41

http://regexr.com/
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2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

http://regexr.com/ 

42

http://regexr.com/


Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● Intended result:

Latest figures from the US government show the trade deficit with 
China reached an all-time high of $365.7bn (£250.1bn) last year. By 
February this year it had already reached $57bn.

Latest figures from the US government show the trade deficit with 
China reached an all time high of $ 365.7 bn ( £ 250.1 bn ) last year . 
By February this year it had already reached $ 57 bn . 

43



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

2. Natural Language Processing / 2.9 Tokenization

Word Tokenization

● Issues related to tokenization:

○ Separators: punctuations

○ Exceptions: „m.p.h“, „Ph.D“

■ Expansions: „we're“ = „we are“

■ Multi-words expressions: „New York“

○ Numbers:

■ Dates: 3/20/91

■ More Dates: 55 B.C.

■ IP addresses: 192.168.0.1

■ Phone numbers: (800) 234-2333

■ ...

 
44
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2. Natural Language Processing / 2.9 Tokenization

Segmentation = Tokenization

● Word segmentation: separation of the morphemes 

but also tokenization for languages without 'space' character.

● Chinese, Japanese: sentences but not words are delimited.

● Thai and Lao: phrases and sentences but not words are delimited.

● Vietnamese: syllables but not words are delimited.

http://www.bjnews.com.cn/ 

45

http://www.bjnews.com.cn/
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2. Natural Language Processing / 2.9 Tokenization

Sentence Splitting

● Dividing a string of written language into its component sentences.

● In English and some other languages, using punctuation, 

particularly the full stop/period character (.?!) is a reasonable 

approximation.

● Non trivial problem, since in English the full stop character also is 

used for abbreviations or numbers.

○ Examples:  „Mr.“, „4.5“

46
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2. Natural Language Processing / 2.9 Tokenization

Sentence Splitting

● “Vanilla” Approach

○ If it's a period, it ends a sentence.

○ If the preceding token is in the hand-compiled list of 

abbreviations, then it doesn't end a sentence.

○ If the next token is capitalized, then it ends a sentence.

● Capable of detecting ca. 95% of sentence boundaries.

● Alternative Approaches: 

○ Based on regular expressions

○ Based on rules or machine learning, e.g. binary classifiers that 

decide whether a certain punctuation is part of a word or not.
47
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Can we “predict” a Word?
49

Jean Marc Cote, France in 2000 year (XXI century). Future school.(1901), public domain 

https://commons.wikimedia.org/wiki/File:France_in_XXI_Century._School.jpg
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Word Prediction

● “To be or not to…”

● “The pen is mightier than the…”

● “You can’t judge a book by…”

● “Es irrt der Mensch, solang’ er ….”

● “Die Botschaft hör ich wohl, allein mir fehlt …”
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Human Prediction

● How do humans predict words?

○ Domain knowledge, as e.g.

red blood vs. hat

○ Syntactic knowledge, as e.g.

The … <adjective|noun> 

○ Lexical knowledge, as e.g.

Baked potato vs. steak

● Claim: A useful part of the knowledge needed to allow Word Prediction 

can be captured using simple statistical techniques.
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2. Natural Language Processing / 2.9 Language Model and N-Grams

N-gram Models

● Word Prediction can be formalized with probabilistic N-gram models:

○ 2-gram (bigram): (to, be), (be, or), (or, not), (not, to)

○ 3-gram (trigram): (to, be, or), (be, or, not), (or, not, to)

● An N-gram is an N-Token of words.

● In an N-gram model, the last word w
n
 depends only on the previous n-1 

words (w
1
,...w

n-1
) (Markov assumption)

● and thus, the last word w
n
 will be computed from the previous n-1 

words (w
1
,...w

n-1
).

● Statistical models of word sequences are called Language Models (LM).
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Speech Recognition

● „Computers can recognize speech.“ 

„Computers can wreck a nice peach.”

● „Give peace a chance.“ 

„Give peas a chance.“

● „ice cream.“ 

„I scream.“

● “Two birds are flying.”

“Two beards are flying.”
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Handwriting Recognition

http://webdemo.myscript.com/views/text.html 
54
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Basic Probability Theory

● Trial:
○ Throwing a dice, predicting a word.

● Sample space Ω:
○ The set of all possible outcomes

(all numbers in a lottery; all words in Shakespeare’s plays).

● Event ω ⊆ Ω:
○ An actual outcome (a subset of Ω)

(predicting ‘the’, throwing a “3”,...).
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2. Natural Language Processing / 2.9 Language Model and N-Grams

The Probability of Events

● Kolmogorov Axioms:

1. Each event has a probability between 0 and 1.

2. The null event has probability 0.

The probability that any event happens is 1.

3. The probability of all disjoint events sums to 1.
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Statistical Language Model

● Finding the probability of a sentence or a sequence of words:

● Example:

○ „Computers can recognize speech.“

○ P(Computer, can, recognize, speech) 

● Rank possible sentences:

○ P(“Today is Wednesday”) > P(“Wednesday today is”)

○ P(“Today is Wednesday”) > P(“Today is book”)
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2. Natural Language Processing / 2.10 Language Model and N-Grams

Conditional Probability

Conditional Probability P(B|A) 
that event B occurs under the assumption that 
event A has already occurred.

Bayes Theorem
The probability that event A occurs followed by event B equals 
the probability that event A occurs and 
event B occurs under the assumption that event A has occurred.

Extension to multiple events via chain rule
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Conditional Probability

● P(to be or not) = P(to) ·

P(be|to) ·

P(or|to,be) ·

P(not|to,be,or)

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.
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● But how do we determine the probability of the occurrence of words? 
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Conditional Probability

● P(to be or not) = P(to) ·

P(be|to) ·

P(or|to,be) ·

P(not|to,be,or)

Generalization of the Bayes Theorem for modelling a sequence of words in a (natural) language.
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● But how do we determine the probability of the occurrence of words? 
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2. Natural Language Processing / 2.10 Language Model and N-Grams

Corpora

● To understand and model how language works, we need empirical evidence.

● Probabilities are based on counting things.

● Idea: Count the occurrence of words in large collections of texts (=corpora).

● A corpus is a computer-readable collection of text or speech.

Ideally, naturally-occurring corpora serve as realistic samples of a language.

○ Corpus of Contemporary American English: 520m words, US, 1990-2015

○ The British National Corpus: 100m words, UK, 1991-1994

○ The International Corpus of English: 23 local corpora, 1m words each

○ The Google N-gram Corpus 

■ N-grams from printed sources, 1500-2008, in English, Chinese, French, German, 

Hebrew, Italian, Russian, or Spanish,

1,024,908,267,229 words.

http://www.corpusdata.org/
http://www.natcorp.ox.ac.uk/

https://books.google.com/ngrams 
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html   61
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2. Natural Language Processing / 2.10 Language Model and N-Grams

https://books.google.com/ngrams62
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2. Natural Language Processing / 2.9 Language Model and N-Grams

Complexity of a Statistical Language Model

● Complexity: O(|V|n*) V...Vocabulary, n*...maximum sentence length

○ 475,000 main headwords in Webster's Third New International Dictionary

○ Average English sentence length: 14.3 words

○ A rough estimate: 𝑂(475,00014)～3.38 ·1066 TB

● By applying an N-gram model, we make the model more compact: 𝑂(475,000N).
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2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Models

● The intuition of the N-gram model is that 

○ instead of computing the probability of a word given its entire history, 

○ we can approximate the history by just the last few words.

● For the bigram model we approximate the probability of a word given all its 

previous words by using only the conditional probability of its preceding 

word (Markov assumption):
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2. Natural Language Processing / 2.10 Language Model and N-Grams

Markov Assumption

● Using the Markov Assumption to compute the probability of a text 

sequence for the bigram model:
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2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Model

● Unigram:

● Bigram:

● Trigram:

● N-gram:
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2. Natural Language Processing / 2.10 Language Model and N-Grams

Maximum Likelihood Estimation

● How to estimate N-gram probabilities?

● Maximum Likelihood Estimation (MLE)

○ A method of estimating the parameters of a statistical model 

given observations.

○ By finding the parameter values that maximize the likelihood of 

making the observations given the parameters.

● The MLE for the parameters of an N-gram model is computed by 

normalizing counts from a corpus. 
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2. Natural Language Processing / 2.10 Language Model and N-Grams

Markov Assumption and Maximum Likelihood Estimation

P(to be or not) = P(not|to be or) ⋅

P(or|to be) ⋅

P(be|to) ⋅

P(to)

P(to be or not) = P(to) ⋅

P(be|to) ⋅

P(or|be) ⋅

P(not|or)

Markov Assumption

Maximum 
Likelihood 
Estimation
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2. Natural Language Processing / 2.10 Language Model and N-Grams

N-gram Model - Generating Shakespeare

● Unigram: To him swallowed confess hear both. Which. Of save on trail for are 

ay device and rote life have

Hill he late speaks; or! a more to leg less first you enter.

● Bigram: Why dost stand forth thy canopy, forsooth; he is this palpable hit 

the King Henry. Live king. Follow.

What means, sir. I confess she? then all sorts, he is trim, captain

● Trigram: Fly, and will rid me these news of price. Therefore the sadness of 

parting, as they say, ’tis done.

This shall forbid it should be branded, if renown made it empty.

● 4-gram: King Henry. What! I will go seek the traitor Gloucester. Exeunt some 

of the watch. A great banquet serv’d in;

It cannot be but so.
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2. Natural Language Processing / 2.10 Language Model and N-Grams

How to generate “plausible” Text from N-grams

● Example for 2-grams (for n-grams simply adapt).

● From your corpus:
1. Choose a random 2-gram with (<s>,w

1
) 

2. Next choose another random n-gram (w
1
,w

2
) 

3. Continue choosing (w
i
,w

i+1
), until you choose (w

n
,</s>) as the last word.

4. Then tie all new words (<s>,w
1
,...,w

n
,</s>) together in a sentence.

● Why does it work?
○ |Shakespeare Corpus|=884,647 tokens, |V|=29,066
○ Shakespeare produced only 300,000 2-gram types 

out of |V|2= 844·106 possible 2-grams.
○ So, 99.96% of the possible bigrams were never used. 
○ 4-grams: The output looks like Shakespeare because it is fragments of 

Shakespeare...
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2. Natural Language Processing - 3 
Bibliography

● D. Jurafsky, J. H. Martin, Speech and Language Processing, 2nd ed (draft), 2007,

○ Section 2.2, Finite State  Automata

○ Section 3.2-3.8, Finite State Transducers

(please note that this refers to the 2nd ed.)

● D. Jurafsky, J. H. Martin, Speech and Language Processing, 3rd ed (draft)., 2019,

○ Section 3.1, N-grams 

(please note that this refers to the 3rd ed.)
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2. Natural Language Processing - 3 
Syllabus Questions 

● Define a Finite State Automaton.

● What is a Finite State Automaton used for in NLP?

● What is the difference between a Finite State Automaton and a Finite State Transducer?

● How (in principle) is morphological parsing implemented with an FST? 

● What is tokenization?

● What are the challenges for sentence tokenization and word tokenization?

● Sketch a simple approach (vanilla approach) for sentence tokenization that achieves 

better results than only looking for sentence delimiters.

● What is a language model?

● What is the purpose of a language model?

● Why are we using N-grams to approximate a language model?
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2. Natural Language Processing - 3 
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