Information Service Engineering

Lecture 11: Basic Machine Learning - 2

Karlsruher Institut für Technologie

Leibniz Institute for Information Infrastructure

Prof. Dr. Harald Sack FIZ Karlsruhe - Leibniz Institute for Information Infrastructure AIFB - Karlsruhe Institute of Technology **Summer Semester 2021** Information Service Engineering Last Lecture: Basic Machine Learning - 1

- 4.1 A Brief History of Al
- 4.2 Introduction to Machine Learning
- 4.3 Main Challenges of Machine Learning
- 4.4 Machine Learning Workflow
- 4.5 Basic ML Algorithms 1 k-Means Clustering AI and Machine Learning
- 4.6 Basic ML Algorithms 2 Linear Regression
- 4.7 Basic ML Algorithms 3 Decision Trees
- 4.8 Neural Networks and Deep Learning
- 4.9 Word Embeddings
- 4.10 Knowledge Graph Embeddings

- Machine Learning Applications
- Classification vs. Regression
- Supervised vs. Unsupervised Learning
- Machine Learning Challenges
- Overfitting
- Data Cleaning
- Sampling
- Cross Fold Validation

Information Service Engineering 4. Basic Machine Learning

- 4.1 A Brief History of Al
- 4.2 Introduction to Machine Learning
- 4.3 Main Challenges of Machine Learning
- 4.4 Machine Learning Workflow
- 4.5 Basic ML Algorithms 1 k-Means Clustering
- 4.6 Basic ML Algorithms 2 Linear Regression
- 4.7 Basic ML Algorithms 3 Decision Trees
- 4.8 Neural Networks and Deep Learning
- 4.9 Word Embeddings
- 4.10 Knowledge Graph Embeddings

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Supervised and Unsupervised Learning

- In supervised learning aka predictive analytics, data consists of observations $(x_i, y_i), x_i \in \mathbb{R}^p, i = 1, ..., n$
- Such data is called **labeled data**, and the y_i are thought of as the labels for the data.
- In **unsupervised learning**, we just look at data $x_i \in \mathbb{R}^p$, i = 1, ..., n to detect patterns.
- This is called **unlabeled data**.
- Even if we have labels y_i, we may still wish to temporarily ignore the y_i and conduct unsupervised learning on the inputs x_i.

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Kar

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Examples for Unsupervised Learning Tasks

- Identify similar groups of **online shoppers** based on their browsing and purchasing history.
- Identify similar groups of **music listeners** or **movie viewers** based on their ratings or recent listening/viewing patterns.
- Identify similar groups of patients based on their medical records.
- Determine how to place sensors, broadcasting towers, law enforcement, or emergency-care centers to guarantee that desired coverage criteria are met.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Unsupervised Learning

- If there are no labels, how do we know if results are meaningful?
 - Experts might interpret the result (external evaluation).
- However, we need **Unsupervised Learning**, because:
 - Labeling large datasets is very costly.
 - We may have no idea what/how many classes there are (data mining).
 - We may want to use **clustering** to gain some insight into the structure of the data before designing a classifier.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Clustering

- What is a good clustering?
 - Internal distances (within the cluster) should be small.
 - External distances (inter-cluster) should be large.
- Clustering is a way to discover new categories.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Clustering

- A **clustering** is a partition $\{C_1, ..., C_k\}$, where each C_k denotes a subset of the observations.
- Each observation belongs to one and only one of the clusters.
- To denote that the ith observation is in the kth cluster, we write $i \in C_k$.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Clustering - What does 'Similarity' mean?

- To start with, we need a **proximity measure**:
 - Similarity measure $s(x_i, x_k)$: large, if x_i and x_k are similar
 - **Dissimilarity measure** (distance) $d(x_i, x_k)$: small, if x_i and x_k are similar

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering Distance Measures

 \geq

Euclidean distance:
$$d(x_i, x_j) = \sqrt{\sum_{k=1}^d (x_i^{(k)} - x_j^{(k)})^2}$$

 \circ translation invariant

• Manhattan distance:
$$d(x_i, x_j) = \sum_{k=1}^d |x_i^{(k)} - x_j^{(k)}|$$

• less complex to compute

• Main idea:

A good clustering is one for which the **within-cluster variation** is as small as possible.

- The within-cluster variation WCV(C_k) for cluster C_k is some measure of the amount by which the observations within each class differ from one another.
- **Goal**: Find C_1, \ldots, C_k that minimize $\sum_{k=1}^{K} WCV(C_k)$.

"Partition the observations into K clusters such that the WCV summed up over all K clusters is as small as possible."

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering k-Means Clustering

• Determine within-cluster variation

• **Goal**: Find
$$C_1, \ldots, C_k$$
 that minimize $\sum_{k=1}^{K} WCV(C_k)$.
• Use Euclidean distance: $WCV(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$,

where $|C_k|$ denotes the number of observations in cluster k.

• The total number of clusters K is a fixed parameter.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering k-Means Clustering

• WCV(C_k) can be rewritten:

$$WCV(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \|(x_i - x_{i'})\|_2^2$$
$$= 2 \sum_{i \in C_k} \|x_i - \overline{x}_k\|^2$$

• with
$$\overline{x}_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i$$
 is just the average of all the points in Cluster C_k (Cluster Centroid or Cluster Center).

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering k-Means Clustering

- Simple Example
 - \circ n=5 and K =2
 - distance matrix

	I	2	3	4	5
I	0	0.25	0.98	0.52	1.09
2	0.25	0	1.09	0.53	0.72
3	0.98	1.09	0	0.10	0.25
4	0.52	0.53	0.10	0	0.17
5	1.09	0.72	0.25	0.17	0

o Red clustering: ∑ WCV(C_k) = (0.25 + 0.53 + 0.52)/3 + 0.25/2 = 0.56
 o Blue clustering: ∑ WCV(C_k) = 0.25/2 + (0.10 + 0.17 + 0.25)/3 = 0.30

- 1. Start by **randomly** partitioning the observations into **K clusters**.
- 2. Until the clusters stop changing, repeat:
 - a. For each cluster, compute the **cluster centroid**.
 - b. Assign each observation to the cluster whose centroid is the closest.

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leik

- It is infeasible to actually optimize WCV(C_k) in practice, but K-means provides a so-called **local optimum** of this objective.
- The achieved result depends both on K, and also on the random initialization.
- It is a good idea to try different random starts and pick the best result among them.
- There is a method called **K-means++** that improves how the clusters are initialized.

Information Service Engineering 4. Basic Machine Learning

- 4.1 A Brief History of Al
- 4.2 Introduction to Machine Learning
- 4.3 Main Challenges of Machine Learning
- 4.4 Machine Learning Workflow
- 4.5 Basic ML Algorithms 1 k-Means Clustering
- 4.6 Basic ML Algorithms 2 Linear Regression
- 4.7 Basic ML Algorithms 3 Decision Trees
- 4.8 Neural Networks and Deep Learning
- 4.9 Word Embeddings
- 4.10 Knowledge Graph Embeddings

• With Linear Regression we aim to fit a line to a scattering of data.

• Notation:

- Input vector $x \in \mathbb{R}^N$
- $\circ \quad \textbf{Output vector} \quad y \in \mathbb{R}$
- Parameters $\beta = (\beta_0, \beta_1, \dots, \beta_N)^\top \in \mathbb{R}^{N+1}$

• **Linear** model:
$$f(x) = \beta_0 + \sum_{j=1}^{N} \beta_j x_j$$

- Given training data $D = \{(x_i, y_i)\}_{i=1}^{p}$
- We define the **least squares costs** (or "loss") $L^{ls}(\beta) = \sum_{i=1}^{n} (y_i f(x_i))^2$

- Try to find the line (hyperplane) that fits best to the given data by **minimizing its distance between the data and the line**.
- The Least Squares Cost (L^{Is}(β)) framework aims at recovering the line (hyperplane) that minimized the total squared length of the error.

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

х

- Find optimal parameters β
 - Augment input vector with a 1 in front:

• Simplified linear model:

Rewrite LSC:

Ο

 $\beta = (\beta_0, \beta_1, \dots, \beta_N)^\top \in \mathbb{R}^{N+1}$ $f(x) = \beta_0 + \sum_{j=1}^N \beta_j x_j = \mathbf{x}^\top \beta$ $L^{ls}(\beta) = \sum_{i=1}^P (y_i - \mathbf{x}^\top \beta)^2 = \|y - \mathbf{X}\beta\|^2$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_P^\top \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,N} \\ \vdots & & & \vdots \\ 1 & x_{1P,1} & x_{P,2} & \dots & x_{P,N} \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_P \end{pmatrix}$$

 $\mathbf{x} = (1, x) = (1, x_1, x_2, \dots, x_N)^{\mathsf{T}} \in \mathbb{R}^{N+1}$

- Find optimal parameters β
 - Rewrite LSC:

$$L^{ls}(\beta) = \sum_{i=1}^{P} (y_i - \mathbf{x}^{\mathsf{T}} \beta)^2 = \|y - \mathbf{X}\beta\|^2$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_P^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,N} \\ \vdots & & & \vdots \\ 1 & x_{1P,1} & x_{P,2} & \dots & x_{P,N} \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_P \end{pmatrix}$$

• Compute optimum by setting the gradient to zero: $0_{P}^{\top} = \frac{\partial L^{is}(\beta)}{\partial \beta} = -2(y - \mathbf{X}\beta)^{\top}\mathbf{X}$ $\Leftrightarrow 0_{P} = \mathbf{X}^{\top}\mathbf{X}\beta - \mathbf{X}^{\top}y$ $\Leftrightarrow \hat{\beta}^{ls} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}y$ via chain rule: $f(x) = u(v(x)) \Rightarrow f'(x) = u'(v(x))v'(x)$

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Example - Berlin Climate Data

Climate Dataset

- Date
- AverageTemperature
- AverageTemperatureUncertainty
- City
- Country
- Latitude
- Longitude

New:

- Year
- 12MonthAvgTemperature

year-mm-dd average surface temperature uncertainty of measurement city of measurement country of measurement latitude longitude

extracted from date 12 month average of the temperature

Berlin Average Temperatures 1753-2013 🛛 ☆ 🖿

File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

	А	В	С	D	E	F	G	Н	1	J	K
	date	year	12monthAverag A	verageTemper	AverageTemper	City	Country	Latitude	Longitude		
	1753-01-01	1753	8.715666667	-2.452	7.998	Berlin	Germany	52.24N	13.14E		
	1754-01-01	1754	8.492833333	-1.341	2.212	Berlin	Germany	52.24N	13.14E		
	1755-01-01	1755	8.261083333	-6.032	6.072	Berlin	Germany	52.24N	13.14E		
	1756-01-01	1756	9.624833333	2.619	6.38	Berlin	Germany	52.24N	13.14E		
	1757-01-01	1757	9.153666667	-1.883	4.262	Berlin	Germany	52.24N	13.14E		
	1758-01-01	1758	8.250833333	-4.598	1.266	Berlin	Germany	52.24N	13.14E		
	1759-01-01	1759	9.03925	2.143	7.459	Berlin	Germany	52.24N	13.14E		
	1760-01-01	1760	8.989166667	-2.831	5.388	Berlin	Germany	52.24N	13.14E		
)	1761-01-01	1761	9.47275	-0.742	8.045	Berlin	Germany	52.24N	13.14E		
	1762-01-01	1762	8.52625	1.105	3.177	Berlin	Germany	52.24N	13.14E		
2	1763-01-01	1763	8.619916667	-5.068	6.828	Berlin	Germany	52.24N	13.14E		
l.	1764-01-01	1764	8.913666667	1.933	5.876	Berlin	Germany	52.24N	13.14E		
	1765-01-01	1765	8.539666667	0.679	11.287	Berlin	Germany	52.24N	13.14E		
;	1766-01-01	1766	8.865166667	-2.678	7.946	Berlin	Germany	52.24N	13.14E		
	1767-01-01	1767	8.138416667	-8.253	7.235	Berlin	Germany	52.24N	13.14E		
7	1768-01-01	1768	8.02925	-5.705	13.971	Berlin	Germany	52.24N	13.14E		
	1769-01-01	1769	8.463583333	0.72	7.133	Berlin	Germany	52.24N	13.14E		
	1770-01-01	1770	8.4975	-1.689	8.09	Berlin	Germany	52.24N	13.14E		
	1771-01-01	1771	7.454	-2.867	8.727	Berlin	Germany	52.24N	13.14E		
	1772-01-01	1772	9.13475	-0.944	9.804	Berlin	Germany	52.24N	13.14E		
	1773-01-01	1773	9.522083333	1.64	2.79	Berlin	Germany	52.24N	13.14E		
	1774-01-01	1774	8.458666667	-1.993	9.485	Berlin	Germany	52.24N	13.14E		
	1775-01-01	1775	10.09666667	-0.523	5.569	Berlin	Germany	52.24N	13.14E		
;	1776-01-01	1776	8.363	-8.336	6 452	Berlin	Germany	52.24N	13.14E		

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Example - Berlin Climate Data

FIZ Karlsruhe • ucture 12monthAverageTemperature 11 10 9 8 1800 1850 1900 1950 2000 year

 There might be a correlation between the year of a measurement and the temperature.

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Example Berlin Climate Data

Γ→

- The linear regression prediction might underfit the data.
- There might be a **non linear correlation**.
- The **temperature** might also be dependent on other factors, such as e.g. **latitude**, etc.

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Root Mean Square Error (RMSE)

• A popular measure for the achieved quality of the prediction is the **Root Mean Square Error RMSE**:

$$RMSE(\mathbf{X}, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h(\mathbf{x}_i^{\mathsf{T}}) - y_i\right)^2}$$

with
$$m$$
 ... number of dataset instances
 $\mathbf{X}_{i}^{\mathsf{T}}$... feature vector for ith instance
 y_{i} ... label (desired output) of ith instance
 h ... hypothesis (prediction function)
 $\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1}^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{P}^{\mathsf{T}} \end{pmatrix}$

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Example Berlin Climate Data

Γ→

- The linear regression prediction might underfit the data.
- There might be a **non linear** correlation.
- The **temperature** might also be dependent on other factors, such as e.g. **latitude**, etc.
- RMSE=0.7995

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Non Linear (Polynomial) Regression

• Replace the inputs $x_i \in \mathbb{R}^d$ by some **non-linear features** $\phi(x_i) \in \mathbb{R}^k$

• The optimal
$$\boldsymbol{\beta}$$
 is the same $\hat{\boldsymbol{\beta}}^{ls} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}y$ but with $\mathbf{X} = \begin{pmatrix} \boldsymbol{\phi}(x)_{1}^{\top} \\ \vdots \\ \boldsymbol{\phi}(x)_{P}^{\top} \end{pmatrix} \in \mathbb{R}^{n \times k}$

• What are "features"?

a) Features are an arbitrary set of basis functions.

b) Any function linear in β can be written as $f(x) = \phi(x)^{\top} \beta$

for some ϕ - which we denote as "**features**".

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Non Linear (Polynomial) Regression

• Linear features:
$$\phi(x) = (1, x_1, \dots, x_N) \in \mathbb{R}^{1+N}$$

• Quadratic features
$$\phi(x) = (1, x_1, \dots, x_N, x_1^2, x_1x_2, x_1x_3, \dots, x_n^2) \in \mathbb{R}^{1+N+\frac{N(N+1)}{2}}$$

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Example - Berlin Climate Data

RMSE(polynomial): 0.7551 12monthAverageTemperature 11 10 8. 7 1800 1850 1900 1950 2000 year

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

• We might also try a non linear (polynomial) regression.

• Here degree=8, **RMSE = 0.7551**

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression Berlin Climate Change Regression in a Notebook

🔼 🍐 11 - ISE 2021 - ClimateData Regression HandsOn 🛛 😭

File Edit View Insert Runtime Tools Help All changes saved

RAN	1	1	Fd	:+:
Disk			Eu	IU

Share 1

Comment

+	Code	+ 1	Text

 \equiv

Q

Basic Machine Learning - Linear Regression Examples

This is the colab notebook example for lecture 11 Basic Machine Learning 2, chapter 4.6 Basic ML Algorithms 2 - Linear Regression, of

AIFB/KIT Lecture "Information Service Engineering" Summer Semester 2021.

In this colab notebook you will learn how to make use of the <u>SciKit Learn</u> library for applying machine learning algorithms, in particular linear and polynomial regression, <u>mathplotlib</u> for data visualization, <u>pandas</u> for data analysis, <u>numpy</u> to manage multi-dimensional arrays.

Please make a copy of this notebook to try out your own adaptions via "File -> Save Copy in Drive"

- Set Up

```
[ ] # Common imports
import numpy as np
import pandas as pd
```

```
# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['ytick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
```

- Get the Data

Linear Regression Python Colab Notebook

Information Service Engineering 4. Basic Machine Learning

- 4.1 A Brief History of Al
- 4.2 Introduction to Machine Learning
- 4.3 Main Challenges of Machine Learning
- 4.4 Machine Learning Workflow
- 4.5 Basic ML Algorithms 1 k-Means Clustering
- 4.6 Basic ML Algorithms 2 Linear Regression
- 4.7 Basic ML Algorithms 3 Decision Trees
- 4.8 Neural Networks and Deep Learning
- 4.9 Word Embeddings
- 4.10 Knowledge Graph Embeddings

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees
Decision Trees

- In many classification or regression problems, we expect all attribute values present at the same time.
- However...
 - sometimes new attributes occur only over time,
 - sometimes it is more efficient,
 first to check the most promising attributes only.

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees Should We Play Tennis?

- Depends on
 - Outlook
 - \circ Wind
 - Temperature
 - Humidity
 - o ...
- Internal node: test attribute X_i
- Branch: selects value for X_i
- Leaf node: predict Y
- Given: a set of possible instances: <Humidity=low, Wind=weak, Outlook=rain, Temp=high>

• Problem Setting:

- Set of possible instances X,
- each instance $x \in X$ is a feature vector $x = \langle x_1, x_2, \dots, x_n \rangle$.
- Unknown target function $f = X \rightarrow Y$
 - Y is discrete valued.
- Set of function hypotheses $H = \{h \mid h : X \to Y\}$
 - \circ each hypothesis *h* is a decision tree.
- Input:
 - Training examples $\{\langle x^{(i)}, y^{(i)} \rangle\}$ of unknown target function f.
- Output:
 - Hypothesis $h \in H$ that best approximates target function f.

- In general, decision trees represent a **disjunction of conjunctions** of constraints on the attribute values of instances.
- The given decision tree corresponds to:

 $(outlook = sunny \land humidity = low) \lor$ $(outlook = overcast) \lor$ $(outlook = rain \land wind = weak)$

• Decision Trees can represent any function.

- Constructing a decision tree is easy:
 - Given *n* features, there are *n*! possible decision trees.
- Unfortunately, a decision tree can grow very large.
 - Given *n* features with *m* possible choices,
 - then a decision tree might grow up to size m^n .
- The size of a decision tree depends on the order of its features.
- Learning algorithm tries to determine a good ordering.
- Learning the simplest (smallest) decision tree is an **NP complete problem** (if you are interested, check: Hyafil & Rivest'76).

• Resort to a greedy heuristic:

- Start from an empty decision tree,
- split on next "best" attribute,
- recurse.
- What is the best attribute?
- We use **information theory** to guide us.

• Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty.

Entropy

• The **Information Content** (**Entropy**) *H* of a feature variable *x* with *n* possible feature values is based on its relative frequency of occurrence (probability):

$$H(x) = -\sum_{i=1}^{n} p_i \cdot \log_2(p_i)$$

• The unit to measure information content is **bit** (*binary digit, basic indissoluble information unit*).

Y

• Which attribute is better to split on, X_1 or X_2 ?

Χ,

X₁

• Entropy of Y: [T=5, F=3] H(Y) = $-\frac{5}{8} \log_2(\frac{5}{8}) - \frac{3}{8} \log_2(\frac{3}{8}) = 0.95$ bit

Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

Information Gain

- The Information Gain of a feature Y due to a feature X
 is a measure of the effectiveness of a feature in classifying the training data.
- It is simply the **expected reduction in entropy** caused by partitioning the examples according to this feature:

$$G(Y|X) = H(Y) - H(Y|X)$$
$$= H(Y) - \sum_{x \in X} \frac{|Y_x|}{|Y|} H(Y_x)$$

 Where x are all possible values of feature X, and Y_x the subset of all instances in Y with X=x

Ι

• Which attribute is better to split on, X₁ or X₂?

• $IG(Y|X_1) = 0.95 - (4/8 H(X_1=True) + 4/8 H(X_1=False)) = 0.95 - (0 + 0.4) = 0.55$ $IG(Y|X_2) = 0.95 - (4/8 H(X_2=True) + 4/8 H(X_2=False)) = 0.95 - (0.4 + 0.5) = 0.05$

• Which attribute is better to split on, X₁ or X₂?

• $IG(Y|X_1) = 0.95 - (4/8 H(X_1=True) + 4/8 H(X_1=False)) = 0.95 - (0 + 0.4) = 0.55$ $IG(Y|X_2) = 0.95 - (4/8 H(X_2=True) + 4/8 H(X_2=False)) = 0.95 - (0.4 + 0.5) = 0.05$

- ID3 greedy heuristic:
 - 1. Start from an empty decision tree.
 - 2. Split on next "best" attribute,i.e. the attribute with the next highest information gain.
 - 3. Recurse.

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees ID3 Algorithm - Example

Outlook	Temperature	Humidity	Wind	PlayTennis
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rain	mild	high	weak	yes
rain	cool	low	weak	yes
rain	cool	low	strong	no
overcast	cool	low	strong	yes
sunny	mild	high	weak	no
sunny	cool	low	weak	yes
rain	mild	low	weak	yes
sunny	mild	low	strong	yes
overcast	mild	high	strong	yes
overcast	hot	low	weak	yes
rain	mild	high	strong	no

IG(PlayTennis, Outlook)	= 0.246
IG(PlayTennis, Humidity)	= 0.151
IG(PlayTennis, Wind)	= 0.048
IG(PlayTennis, Temperature)	= 0.029

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees ID3 Algorithm - Example

Outlook	Temperature	Humidity	Wind	PlayTennis
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rain	mild	high	weak	yes
rain	cool	low	weak	yes
rain	cool	low	strong	no
overcast	cool	low	strong	yes
sunny	mild	high	weak	no
sunny	cool	low	weak	yes
rain	mild	low	weak	yes
sunny	mild	low	strong	yes
overcast	mild	high	strong	yes
overcast	hot	low	weak	yes
rain	mild	high	strong	no

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees ID3 Algorithm - Example

Outlook	Temperature	Humidity	Wind	PlayTennis
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rain	mild	high	weak	yes
rain	cool	low	weak	yes
rain	cool	low	strong	no
overcast	cool	low	strong	yes
sunny	mild	high	weak	no
sunny	cool	low	weak	yes
rain	mild	low	weak	yes
sunny	mild	low	strong	yes
overcast	mild	high	strong	yes
overcast	hot	low	weak	yes
rain	mild	high	strong	no

Example from: Tom Mitchel, *Machine Learning*, MacGraw-Hill (1997), p.59-61

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees Decision Trees - Pros and Cons

- Simple to understand and interpret.
- Able to handle both **numerical and categorical data**.
- Requires little data preparation.
- Uses a **white box model**.
- Possible to validate a model using statistical tests.
- Performs well with large datasets.
- Mirrors human decision making more closely than other approaches.
- **BEWARE**: Decision Tree models easily overfit.

- DT Learning Algorithms:
 - **ID3** (Iterative Dichotomiser 3)
 - C4.5 (successor of ID3)
 - **CART** (Classification And Regression Tree)
 - CHAID (CHi-squared Automatic Interaction Detector). Performs multi-level splits when computing classification trees.
 - **MARS:** extends decision trees to handle numerical data better.

Basic Machine Learning - Decision Trees Examples

plt.rcParams['ytick.labelsize'] = 10

Q

Г

lr

C	File Edit View Insert Runtime Tools Help <u>All changes saved</u>	E Comment
≔	+ Code + Text	V RAM Disk
	+ Code + Text	

	Das	ic Machine Learning - Decision mees Examples
>		the colab notebook example for lecture 11 Basic Machine Learning 2, chapter 4.7 Basic ML Algorithms 3 - Decision Trees, of AIFB/KIT re "Information Service Engineering" Summer Semester 2021.
		colab notebook you will learn how to make use of the <u>SciKit Learn</u> library for applying machine learning algorithms, in particular the on trees and random forest classifier, <u>mathplotlib</u> and <u>seaborn</u> for data visualization, <u>pandas</u> to analyze and manipulate data.
	Please	e make a copy of this notebook to try out your own adaptions via "File -> Save Copy in Drive"
	[2]	<pre># Common imports from sklearn.model_selection import train_test_split from sklearn import tree from sklearn.metrics import accuracy_score,confusion_matrix</pre>
		<pre># for data analysis and manipulation import pandas as pd</pre>
		<pre># To plot pretty figures %matplotlib inline import matplotlib import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelsize'] = 10</pre>
		plt.rcParams['xtick.labelsize'] = 10

Decision Tree Python Colab Notebook

We will load a dataset with weather observations, including the information whether it has rained or not. We will use this dataset to train a decision tree classifier that predicts - based on the available weather data - whether it will rain the next day or not.

- Karlsruhe Institute of Technology

Information Service Engineering 4. Basic Machine Learning

- 4.1 A Brief History of Al
- 4.2 Introduction to Machine Learning
- 4.3 Main Challenges of Machine Learning
- 4.4 Machine Learning Workflow
- 4.5 Basic ML Algorithms 1 k-Means Clustering
- 4.6 Basic ML Algorithms 2 Linear Regression
- 4.7 Basic ML Algorithms 3 Decision Trees
- 4.8 Neural Networks and Deep Learning
- 4.9 Word Embeddings
- 4.10 Knowledge Graph Embeddings

4. Basic Machine Learning - 2 Bibliography

- T. Mitchel, *Machine Learning*, MacGraw-Hill, 1997
 - Chap 3.4.2 (pp. 59-61, The Tennis Decision Tree Example)
- S. Marsland, *Machine Learning, An Algorithmic Perspective*, 2nd. ed., Chapman & Hall / CRC Press, 2015
 - Chap. 14.1 (k-Means Algorithm)
 - Chap. 3.5 (Linear Regression)
 - Chap. 12 (Decision Trees)

(Both books should also be available on the Web as pdf, just keep looking...)

4. Basic Machine Learning - 2 Syllabus Questions

- What's the difference between supervised and unsupervised ML?
- Explain the basic concept of k-Means Clustering.
- Explain the concept of Linear Regression.
- What kind of problems can be solved via Linear Regression?
- Explain the difference between Linear, Multilinear, and Polynomial Regression.
- When are Decision Trees preferred over Linear (Multilinear or Polynomial) Regression?
- Explain the concept of Information Gain.
- What are the Pros and Cons of Decision Trees?