Information Service Engineering
 Last Lecture: Basic Machine Learning - 1

4.1 A Brief History of AI

4.2 Introduction to Machine Learning

4.3 Main Challenges of Machine Learning

4.4 Machine Learning Workflow

4.5 Basic ML Algorithms 1 - k-Means Clustering-AI and Machine Learning
4.6 Basic ML Algorithms 2 - Linear Regression -Machine Learning Applications

- classification vs. Regression
4.7 Basic ML Algorithms 3 - Decision Trees
- Supervised vs. Unsupervised Learning
4.8 Neural Networks and Deep Learning
- Machine Learning challenges
- Overfitting
4.9 Word Embeddings
- Data cleaning
4.10 Knowledge Graph Embeddings
- Sampling
- Cross Fold validation

Information Service Engineering
 4. Basic Machine Learning

4.1 A Brief History of AI
4.2 Introduction to Machine Learning
4.3 Main Challenges of Machine Learning
4.4 Machine Learning Workflow
4.5 Basic ML Algorithms 1 - k-Means Clustering
4.6 Basic ML Algorithms 2 - Linear Regression
4.7 Basic ML Algorithms 3 - Decision Trees
4.8 Neural Networks and Deep Learning
4.9 Word Embeddings
4.10 Knowledge Graph Embeddings

Supervised and Unsupervised Learning

- In supervised learning aka predictive analytics, data consists of observations

$$
\left(x_{i}, y_{i}\right), x_{i} \in \mathbb{R}^{p}, i=1, \ldots, n
$$

- Such data is called labeled data, and the y_{i} are

- In unsupervised learning, we just look at data $x_{i} \in \mathbb{R}^{p}, i=1, \ldots, n$ to detect patterns.
- This is called unlabeled data.
- Even if we have labels y_{i}, we may still wish to temporarily ignore the y_{i} and conduct unsupervised learning on the inputs x_{i}.

Examples for Unsupervised Learning Tasks

- Identify similar groups of online shoppers based on their browsing and purchasing history.
- Identify similar groups of music listeners or movie viewers based on their ratings or recent listening/viewing patterns.
- Identify similar groups of patients based on their medical records.
- Determine how to place sensors, broadcasting towers, law enforcement, or emergency-care centers to guarantee that desired coverage criteria are met.

Unsupervised Learning

- If there are no labels, how do we know if results are meaningful?
- Experts might interpret the result (external evaluation).
- However, we need Unsupervised Learning, because:
- Labeling large datasets is very costly.
- We may have no idea what/how many classes there are (data mining).
- We may want to use clustering to gain some insight into the structure of the data before designing a classifier.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

Clustering

- What is a good clustering?
- Internal distances (within the cluster) should be small.
- External distances (inter-cluster) should be large.
- Clustering is a way to discover new categories.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

Clustering

- A clustering is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, where each C_{k} denotes a subset of the observations.
- Each observation belongs to one and only one of the clusters.
- To denote that the $i^{\text {th }}$ observation is in the $k^{\text {th }}$ cluster, we write $i \in C_{k}$.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

Clustering - What does 'Similarity' mean?

- To start with, we need a proximity measure:
- Similarity measure
$\mathrm{s}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{k}}\right)$: large, if x_{i} and x_{k} are similar
- Dissimilarity measure (distance) $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{k}}\right)$: small, if x_{i} and x_{k} are similar

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

Distance Measures

- Euclidean distance: $\quad d\left(x_{i}, x_{j}\right)=\sqrt{\sum_{k=1}^{d}\left(x_{i}^{(k)}-x_{j}^{(k)}\right)^{2}}$
- translation invariant

- Manhattan distance: $d\left(x_{i}, x_{j}\right)=\sum_{k=1}^{d}\left|x_{i}^{(k)}-x_{j}^{(k)}\right|$
- less complex to compute

k-Means Clustering

- Main idea:

A good clustering is one for which the within-cluster variation is as small as possible.

- The within-cluster variation $\operatorname{WCV}\left(C_{k}\right)$ for cluster C_{k} is some measure of the amount by which the observations within each class differ from one another.
- Goal: Find $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{K}}$ that minimize $\sum_{k=1}^{K} W C V\left(C_{k}\right)$.
"Partition the observations into K clusters such that the wCv summed up over all K clusters is as small as possible."

k-Means Clustering

- Determine within-cluster variation
- Goal: Find $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ that minimize $\sum_{k=1}^{K} W C V\left(C_{k}\right)$.
- Use Euclidean distance: $\quad W C V\left(C_{k}\right)=\frac{1}{\left|C_{k}\right|} \sum_{i, i^{\prime} \in C_{k}} \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}$, where $\left|C_{k}\right|$ denotes the number of observations in cluster k.
- The total number of clusters K is a fixed parameter.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

k-Means Clustering

- $\operatorname{WCV}\left(\mathrm{C}_{\mathrm{k}}\right)$ can be rewritten: $\quad W C V\left(C_{k}\right)=\frac{1}{\left|C_{k}\right|} \sum_{i, i^{\prime} \in C_{k}}\left\|\left(x_{i}-x_{i^{\prime}}\right)\right\|_{2}^{2}$

$$
=2 \sum_{i \in C_{k}}\left\|x_{i}-\bar{x}_{k}\right\|^{2}
$$

- with $\bar{x}_{k}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} x_{i}$ is just the average of all the points in Cluster C_{k}.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

k-Means Clustering

- Simple Example
- $\mathrm{n}=5$ and $\mathrm{K}=2$
- distance matrix

	I	2	3	4	5
I	0	0.25	0.98	0.52	1.09
2	0.25	0	1.09	0.53	0.72
3	0.98	I .09	0	0.10	0.25
4	0.52	0.53	0.10	0	0.17
5	1.09	0.72	0.25	0.17	0

- Red clustering: $\quad \sum \mathrm{WCV}\left(\mathrm{C}_{\mathrm{k}}\right)=(0.25+0.53+0.52) / 3+0.25 / 2=0.56$
- Blue clustering: $\quad \sum W C V\left(C_{k}\right)=0.25 / 2+(0.10+0.17+0.25) / 3=0.30$

k-Means Algorithm

1. Start by randomly partitioning the observations into K clusters.
2. Until the clusters stop changing, repeat:
a. For each cluster, compute the cluster centroid.
b. Assign each observation to the cluster whose centroid is the closest.
3. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means ClustePiata

k-Means Algorithm

- Example: $\mathrm{K}=3$

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

k-Means Summary

- It is infeasible to actually optimize $\operatorname{WCV}\left(\mathrm{C}_{\mathrm{k}}\right)$ in practice, but K-means provides a so-called local optimum of this objective.
- The achieved result depends both on K, and also on the random initialization.
- It is a good idea to try different random starts and pick the best result among them.
- There is a method called K-means++ that improves how the clusters are initialized.

4. Basic Machine Learning / 4.5 Basic ML Algorithms 1 - k-Means Clustering

k-Means Clustering Hands On

- 11-ISE2O21-k-Means Example.ipynb

国 Comment \therefore Share
\qquad园

Basic Machine Learning - k-Means Examples

This is the colab notebook example for lecture 11 Basic Machine Learning 2, chapter 4.5 Basic ML Algorithms 1 - k-Means Clustering, of AIFB/KIT Lecture "Information Service Engineering" Summer Semester 2021.

In this colab notebook you will learn how to make use of the SciKit Learn library for applying machine learning algorithms, in particular the k means clustering, mathplotlib to draw diagrams, numpy to manage multi-dimensional arrays.

Please make a copy of this notebook to try out your own adaptions via "File -> Save Copy in Drive"
k-Means Clustering

Clustering algorithms seek to learn, from the properties of the data, an optimal division or discrete labeling of groups of points.
Many clustering algorithms are available in Scikit-Learn. This colab notebook will give you an example how to use k-means clustering, which is implemented in sklearn.cluster. KMeans.

As usual we start with importing required libraries.
[] \%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set() \# for plot styling
import numpy as np

Information Service Engineering
 4. Basic Machine Learning

4.1 A Brief History of AI4.2 Introduction to Machine Learning
4.3 Main Challenges of Machine Learning
4.4 Machine Learning Workflow
4.5 Basic ML Algorithms 1 - k-Means Clustering
4.6 Basic ML Algorithms 2 - Linear Regression
4.7 Basic ML Algorithms 3 - Decision Trees
4.8 Neural Networks and Deep Learning
4.9 Word Embeddings
4.10 Knowledge Graph Embeddings

Linear Regression

eibniz Institute for Information infrastructure

- With Linear Regression we aim to fit a line to a scattering of data.

Linear Regression

- Notation:
- Input vector $\quad x \in \mathbb{R}^{N}$
- Output vector $y \in \mathbb{R}$
- Parameters $\quad \beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{N}\right)^{\top} \in \mathbb{R}^{N+1}$
- Linear model: $f(x)=\beta_{0}+\sum_{j=1}^{N} \beta_{j} x_{j}$
- Given training data $\quad D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{P}$
- We define the least squares costs (or "loss") $\quad L^{l s}(\beta)=\sum_{i=1}^{P}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
result result

Linear Regression

Linear Regression

- Find optimal parameters $\boldsymbol{\beta}$
- Augment input vector with a 1 in front: $\quad \mathbf{x}=(1, x)=\left(1, x_{1}, x_{2}, \ldots, x_{N}\right)^{\top} \in \mathbb{R}^{N+1}$

$$
\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{N}\right)^{\top} \in \mathbb{R}^{N+1}
$$

- Simplified linear model:

$$
f(x)=\beta_{0}+\sum_{j=1}^{N} \beta_{j} x_{j}=\mathbf{x}^{\top} \beta
$$

- Rewrite LSC:

$$
\begin{aligned}
& L^{l s}(\beta)=\sum_{i=1}^{P}\left(y_{i}-\mathbf{x}^{\top} \beta\right)^{2}=\|y-\mathbf{X} \beta\|^{2} \\
& \mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{P}^{\top}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, N} \\
\vdots & & & & \vdots \\
1 & x_{1 P, 1} & x_{P, 2} & \ldots & x_{P, N}
\end{array}\right), y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{P}
\end{array}\right)
\end{aligned}
$$

Linear Regression

- Find optimal parameters $\boldsymbol{\beta}$
- Rewrite LSC:

$$
\begin{aligned}
& L^{l s}(\beta)=\sum_{i=1}^{P}\left(y_{i}-\mathbf{x}^{\top} \beta\right)^{2}=\|y-\mathbf{X} \beta\|^{2} \\
& \mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{P}^{\top}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, N} \\
\vdots & & & & \vdots \\
1 & x_{1 P, 1} & x_{P, 2} & \ldots & x_{P, N}
\end{array}\right), y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{P}
\end{array}\right)
\end{aligned}
$$

- Compute optimum by setting the gradient to zero:

$$
\begin{aligned}
& 0_{P}^{\top}=\frac{\partial L^{i s}(\beta)}{\partial \beta}=-2(y-\mathbf{X} \beta)^{\top} \mathbf{X} \\
\Leftrightarrow 0_{P} & =\mathbf{X}^{\top} \mathbf{X} \beta-\mathbf{X}^{\top} y \\
\Leftrightarrow \hat{\beta}^{l s} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} y \quad \begin{array}{l}
\text { via chain rule: } \\
\\
\\
\\
\end{array}(x)=u(v(x)) \Rightarrow f^{\prime}(x)=u^{\prime}(v(x)) v^{\prime}(x)
\end{aligned}
$$

Example - Berlin Climate Data

Climate Dataset

- Date
- AverageTemperature
- AverageTemperatureUncertainty
- City
- Country
- Latitude
- Longitude

New:

- Year
- 12MonthAvgTemperature
year-mm-dd
average surface temperature
uncertainty of measurement
city of measurement
country of measurement
latitude
longitude
extracted from date
12 month average of the temperature

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Example - Berlin Climate Data

Karlstuher nstitut für Technologie
${ }^{6}$ FIZKarlsruhe

- There might be a correlation between the year of a measurement and the temperature.

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Example Berlin Climate Data

- The linear regression prediction might underfit the data.
- There might be a non linear correlation.
- The temperature might also be dependent on other factors, such as e.g. latitude, etc.

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Root Mean Square Error (RMSE)

- A popular measure for the achieved quality of the prediction is the Root Mean Square Error RMSE:

$$
R M S E(\mathbf{X}, h)=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(h\left(\mathbf{x}_{i}^{\top}\right)-y_{i}\right)^{2}}
$$

with m... number of dataset instances
$\boldsymbol{X}_{i}^{T} \quad \ldots$ feature vector for ith instance
$y_{i} \quad \ldots \quad$ label (desired output) of ith instance
$h \quad$... hypothesis (prediction function)

$$
\mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{P}^{\top}
\end{array}\right)
$$

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Example Berlin Climate Data

- The linear regression prediction might underfit the data.
- There might be a non linear correlation.
- The temperature might also be dependent on other factors, such as e.g. latitude, etc.
- RMSE=0.7995

Non Linear (Polynomial) Regression

- Replace the inputs $x_{i} \in \mathbb{R}^{d}$ by some non-linear features $\phi\left(x_{i}\right) \in \mathbb{R}^{k}$
- The optimal β is the same $\hat{\beta}^{l s}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} y$ but with $\mathbf{X}=\left(\begin{array}{c}\phi(x)_{1}^{\top} \\ \vdots \\ \phi(x)_{P}^{\top}\end{array}\right) \in \mathbb{R}^{n \times k}$
- What are "features"?
a) Features are an arbitrary set of basis functions.
b) Any function linear in β can be written as $f(x)=\phi(x)^{\top} \beta$
for some $\boldsymbol{\phi}$ - which we denote as "features".

Non Linear (Polynomial) Regression

- Linear features:

$$
\phi(x)=\left(1, x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{1+N}
$$

- Quadratic features $\phi(x)=\left(1, x_{1}, \ldots, x_{N}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n}^{2}\right) \in \mathbb{R}^{1+N+\frac{N(N+1)}{2}}$

$$
x \quad \phi(x) \quad f(x)=\phi(x)^{\top} \beta
$$

$$
\stackrel{\mid c}{x_{1}} \begin{aligned}
& x_{2} \\
& x_{d}
\end{aligned} \xrightarrow{\phi}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{d} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} x_{3} \\
\\
x_{d}^{2}
\end{array}\right] \xrightarrow{\beta} f(x)
$$

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Example - Berlin Climate Data

Karlsuher Institut für Technologie
6
FIZ Karlsruhe

4. Basic Machine Learning / 4.6 Basic ML Algorithms 2 - Linear Regression

Berlin Climate Change Regression in a Notebook

ㅇ. Share
j

- Editi

$\equiv \quad$ Basic Machine Learning - Linear Regression Examples

Q
This is the colab notebook example for lecture 11 Basic Machine Learning 2, chapter 4.6 Basic ML Algorithms 2 - Linear Regression, of
〈〉 AIFB/KIT Lecture "Information Service Engineering" Summer Semester 2021.
\square In this colab notebook you will learn how to make use of the SciKit Learn library for applying machine learning algorithms, in particular linear and polynomial regression, mathplotlib for data visualization, pandas for data analysis, numpy to manage multi-dimensional arrays.
Please make a copy of this notebook to try out your own adaptions via "File -> Save Copy in Drive"

- Set Up

[] \# Common imports
import numpy as np
import pandas as pd
\# To plot pretty figures
\%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12

- Get the Data

Information Service Engineering
 4. Basic Machine Learning

4.1 A Brief History of AI4.2 Introduction to Machine Learning
4.3 Main Challenges of Machine Learning
4.4 Machine Learning Workflow
4.5 Basic ML Algorithms 1 - k-Means Clustering
4.6 Basic ML Algorithms 2 - Linear Regression
4.7 Basic ML Algorithms 3 - Decision Trees
4.8 Neural Networks and Deep Learning
4.9 Word Embeddings
4.10 Knowledge Graph Embeddings

Decision Trees

- In many classification or regression problems, we expect all attribute values present at the same time.
- However...
- sometimes new attributes occur only over time,
- sometimes it is more efficient, first to check the most promising attributes only.

Should We Play Tennis?

- Depends on
- Outlook
- Wind
- Temperature
- Humidity
- Internal node: test attribute X_{i}

- Branch: selects value for X_{i}
- Leaf node: predict Y
- Given: a set of possible instances: <Humidity=low, Wind=weak, Outlook=rain, Temp=high>

Decision Tree Learning

- Problem Setting:
- Set of possible instances X,
- each instance $x \in X$ is a feature vector $x=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.
- Unknown target function $f=X \rightarrow Y$
- Y is discrete valued.
- Set of function hypotheses $H=\{h \mid h: X \rightarrow Y\}$
- each hypothesis h is a decision tree.
- Input:
- Training examples $\left\{\left\langle x^{(i)}, y^{(i)}\right\rangle\right\}$ of unknown target function f.
- Output:
- Hypothesis $h \in H$ that best approximates target function f.

Decision Tree Learning

- In general, decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.
- The given decision tree corresponds to:

$$
\begin{gathered}
(\text { outlook }=\text { sunny } \wedge \text { humidity }=\text { low }) \vee \\
(\text { outlook }=\text { overcast }) \vee \\
(\text { outlook }=\text { rain } \wedge \text { wind }=\text { weak })
\end{gathered}
$$

- Decision Trees can represent any function.

Decision Tree Learning

- Constructing a decision tree is easy:
- Given \boldsymbol{n} features, there are \boldsymbol{n} ! possible decision trees.
- Unfortunately, a decision tree can grow very large.
- Given \boldsymbol{n} features with \boldsymbol{m} possible choices,
- then a decision tree might grow up to size \mathbf{m}^{n}.
- The size of a decision tree depends on the order of its features.
- Learning algorithm tries to determine a good ordering.
- Learning the simplest (smallest) decision tree is an NP complete problem (if you are interested, check: Hyafil \& Rivest'76).

Decision Tree Learning - ID3 Algorithm

- Resort to a greedy heuristic:
- Start from an empty decision tree,
- split on next "best" attribute,
- recurse.
- What is the best attribute?
- We use information theory to guide us.

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees

Decision Tree Learning - ID3 Algorithm

- Which attribute is better to split on, X_{1} or X_{2} ?

- Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty.

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Decision Tree Learning - ID3 Algorithm

Entropy

- The Information Content (Entropy) H of a feature variable x with n possible feature values is based on its relative frequency of occurrence (probability):

$$
H(x)=-\sum_{i=1}^{n} p_{i} \cdot \log _{2}\left(p_{i}\right)
$$

- The unit to measure information content is bit (binary digit, basic indissoluble information unit).

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3-Decision Trees

Decision Tree Learning - ID3 Algorithm

- Which attribute is better to split on, X_{1} or X_{2} ?

- Entropy of $\mathrm{Y}:[\mathrm{T}=5, \mathrm{~F}=3] \mathrm{H}(\mathrm{Y})=-5 / 8 \log _{2}(5 / 8)-3 / 8 \log _{2}(3 / 8)=0.95$ bit

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Decision Tree Learning - ID3 Algorithm

Decision Tree Learning - ID3 Algorithm

Information Gain

- The Information Gain of a feature \boldsymbol{Y} due to a feature \boldsymbol{X}
is a measure of the effectiveness of a feature in classifying the training data.
- It is simply the expected reduction in entropy caused by partitioning the examples according to this feature:

$$
\begin{aligned}
I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& =H(Y)-\sum_{x \in X} \frac{\left|Y_{x}\right|}{|Y|} H\left(Y_{x}\right)
\end{aligned}
$$

- Where x are all possible values of feature X, and Y_{x} the subset of all instances in Y with $X=x$

Decision Tree Learning - ID3 Algorithm

- Which attribute is better to split on, X_{1} or X_{2} ?

$$
I G(Y \mid X)=H(Y)-\sum_{x \in X} \frac{\left|Y_{x}\right|}{|Y|} H\left(Y_{x}\right)
$$

- $\quad \mathrm{IG}\left(\mathrm{Y} \mid \mathrm{X}_{1}\right)=0.95-\left(4 / 8 \mathrm{H}\left(\mathrm{X}_{1}=\right.\right.$ True $)+4 / 8 \mathrm{H}\left(\mathrm{X}_{1}=\right.$ False $\left.)\right)=0.95-(0+0.4)=0.55$ $\mathrm{IG}\left(\mathrm{Y} \mid \mathrm{X}_{2}\right)=0.95-\left(4 / 8 \mathrm{H}\left(\mathrm{X}_{2}=\right.\right.$ True $)+4 / 8 \mathrm{H}\left(\mathrm{X}_{2}=\right.$ False $\left.)\right)=0.95-(0.4+0.5)=0.05$

Decision Tree Learning - ID3 Algorithm

- Which attribute is better to split on, X_{1} or X_{2} ?

$$
I G(Y \mid X)=H(Y)-\sum_{x \in X} \frac{\left|Y_{x}\right|}{|Y|} H\left(Y_{x}\right)
$$

- $\quad \mathrm{IG}\left(\mathrm{Y} \mid \mathrm{X}_{1}\right)=0.95-\left(4 / 8 \mathrm{H}\left(\mathrm{X}_{1}=\right.\right.$ True $)+4 / 8 \mathrm{H}\left(\mathrm{X}_{1}=\right.$ False $\left.)\right)=0.95-(0+0.4)=0.55$ $\mathrm{IG}\left(\mathrm{Y} \mid \mathrm{X}_{2}\right)=0.95-\left(4 / 8 \mathrm{H}\left(\mathrm{X}_{2}=\right.\right.$ True $)+4 / 8 \mathrm{H}\left(\mathrm{X}_{2}=\right.$ False $\left.)\right)=0.95-(0.4+0.5)=0.05$

Decision Tree Learning - ID3 Algorithm

- ID3 greedy heuristic:

1. Start from an empty decision tree.
2. Split on next "best" attribute, i.e. the attribute with the next highest information gain.
3. Recurse.

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees

ID3 Algorithm - Example

Outlook	Temperature	Humidity	Wind	PlayTennis	IG(PlayTennis,Outlook) IG(PlayTennis,Humidity) IG(PlayTennis,Wind) IG(PlayTennis,Temperature)	$\begin{aligned} & =0.246 \\ & =0.151 \\ & =0.048 \\ & =0.029 \end{aligned}$
sunny	hot	high	weak	no		
sunny	hot	high	strong	no		
overcast	hot	high	weak	yes		
rain	mild	high	weak	yes		
rain	cool	low	weak	yes		
rain	cool	low	strong	no		
overcast	cool	low	strong	yes	outerd	
sunny	mild	high	weak	no	\bigcirc	
sunny	cool	low	weak	yes	Yes $=2$ $N_{0}=3$$\quad \begin{array}{r}\text { res }\end{array}$	$\begin{aligned} & Y e s=3 \\ & N_{0}=2 \end{aligned}$
rain	mild	low	weak	yes		
sunny	mild	low	strong	yes		
overcast	mild	high	strong	yes		
overcast	hot	low	weak	yes		
rain	mild	high	strong	no		

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees

ID3 Algorithm - Example

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3 - Decision Trees

ID3 Algorithm - Example

Outlook	Temperature	Humidity	Wind	PlayTennis
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rain	mild	high	weak	yes
rain	cool	low	weak	yes
rain	cool	low	strong	no
overcast	cool	low	strong	yes
sunny	mild	high	weak	no
sunny	cool	low	weak	yes
rain	mild	low	weak	yes
sunny	mild	low	strong	yes
overcast	mild	high	strong	yes
overcast	hot	low	weak	yes
rain	mild	high	strong	no

Example from: Tom Mitchel, Machine Learning, MacGraw-Hill (1997), p.59-61

Decision Trees - Pros and Cons

- Simple to understand and interpret.
- Able to handle both numerical and categorical data.
- Requires little data preparation.
- Uses a white box model.
- Possible to validate a model using statistical tests.
- Performs well with large datasets.
- Mirrors human decision making more closely than other approaches.
- BEWARE: Decision Tree models easily overfit.
- DT Learning Algorithms:
- ID3 (Iterative Dichotomiser 3)
- C4.5 (successor of ID3)
- CART (Classification And Regression Tree)
- CHAID (CHi-squared Automatic Interaction Detector). Performs multi-level splits when computing classification trees.
- MARS: extends decision trees to handle numerical data better.

4. Basic Machine Learning / 4.7 Basic ML Algorithms 3-Decision Trees

Decision Trees Hands On Example

$\triangle 11$ - ISE2021- Decision Trees Example.ipynb is
File Edit View Insert Runtime Tools Help All changes savedComment

- Basic Machine Learning - Decision Trees Examples

This is the colab notebook example for lecture 11 Basic Machine Learning 2, chapter 4.7 Basic ML Algorithms 3 - Decision Trees, of AIFB/KIT $\square \quad$ Lecture "Information Service Engineering" Summer Semester 2021.

In this colab notebook you will learn how to make use of the SciKit Learn library for applying machine learning algorithms, in particular the decision trees and random forest classifier, mathplotlib and seaborn for data visualization, pandas to analyze and manipulate data.

Please make a copy of this notebook to try out your own adaptions via "File -> Save Copy in Drive"
[2] \# Common imports
from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.metrics import accuracy_score,confusion_matrix
\# for data analysis and manipulation
import pandas as pd
\# To plot pretty figures
\%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['axes.labelsize'] = 10
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10

We will load a dataset with weather observations, including the information whether it has rained or not. We will use this dataset to train a decision tree classifier that predicts - based on the available weather data - whether it will rain the next day or not.

Decision Tree Python Colab Notebook

Information Service Engineering
 4. Basic Machine Learning

4.1 A Brief History of AI
4.2 Introduction to Machine Learning
4.3 Main Challenges of Machine Learning
4.4 Machine Learning Workflow
4.5 Basic ML Algorithms 1 - k-Means Clustering
4.6 Basic ML Algorithms 2 - Linear Regression
4.7 Basic ML Algorithms 3 - Decision Trees
4.8 Neural Networks and Deep Learning
4.9 Word Embeddings
4.10 Knowledge Graph Embeddings

4. Basic Machine Learning - 2 Bibliography

- T. Mitchel, Machine Learning, MacGraw-Hill, 1997
- Chap 3.4.2 (pp. 59-61, The Tennis Decision Tree Example)
- S. Marsland, Machine Learning, An Algorithmic Perspective, 2nd. ed., Chapman \& Hall / CRC Press, 2015
- Chap. 14.1 (k-Means Algorithm)
- Chap. 3.5 (Linear Regression)
- Chap. 12 (Decision Trees)
(Both books should also be available on the Web as pdf, just keep looking...)

4. Basic Machine Learning - 2 Syllabus Questions

- What's the difference between supervised and unsupervised ML?
- Explain the basic concept of k-Means Clustering.
- Explain the concept of Linear Regression.
- What kind of problems can be solved via Linear Regression?
- Explain the difference between Linear, Multilinear, and Polynomial Regression.
- When are Decision Trees preferred over Linear (Multilinear or Polynomial) Regression?
- Explain the concept of Information Gain.
- What are the Pros and Cons of Decision Trees?

