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● The majority of neurons encode their 
outputs or activations as a series of brief 
electrical pulses. 

● Dendrites are the receptive zones that 
receive activation from other neurons.

● The cell body (soma) of the neuron’s 
processes the incoming activations 
(excitatory and inhibitory) and converts 
them into output activations.

● Axons are transmission lines that send 
activation to other neurons.

● Synapses allow weighted transmission of 
signals (via neurotransmitters) between 
axons and dendrites to build up large 
neural networks.

● All-or-one response: A higher stimulus 
does not cause a higher response.
→ “binary classifier”

Donald O. Hebb, The Organization of Behavior (1949)

The Brain:

~ 100 billion (1011) neurons
~ 100 trillion (1014) synapses

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Biological Neural Networks
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● Artificial neurons have the same basic 

components as biological neurons. 

● The simplest Artificial Neural Networks 

(ANN) consist of a set of McCulloch-Pitts 

neurons.

● There is a threshold bias x0=1, w0=-θ 
○ Allows bias to be captured from 

input neurons.

○ Allows normalization of output 

thresholds without loss of generality.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

McCulloch-Pitts Neurons
McCulloch & Pitts, A Logical Calculus of the Ideas Immanent in Nervous Activity (1943)
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An arrangement of one input layer of activations feeding forward to one 

output layer of McCulloch-Pitts neurons is known as a simple Perceptron.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Perceptron
Frank Rosenblatt, The perceptron. A probabilistic model for information storage and organization in the brain (1958)

● Input layer with n inputs x1,...,xn. 

● Output layer of m McCulloch-Pitts 

neurons y1,...,ym with associated thresholds θ1 ,..., θm.

● Each input xi is connected to each output neuron yj with an 

associated weight wi,j.

● For the training, each output yj computed by the perceptron 

will be compared with a desired output d1,...,dm.

● Training a perceptron means adapting the weights w
ij
 until 

they fit input-output relationships of the given ‘training data‘.
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Learning with a Perceptron

● Initialize weights randomly

● Take one sample 𝑥𝑖 and predict 𝑦𝑖
● For erroneous predictions update weights

○ If the output was 𝑦𝑖 = 0 and desired output  d𝑖 = 1, 

increase weights.

○ If the output was 𝑦𝑖  = 1 and desired output  d𝑖 = 0, 

decrease weights.

● Repeat until no errors are made.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

What the Perceptron can Do
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An arrangement of one input layer of activations feeding forward to one 

output layer of McCulloch-Pitts neurons is known as a simple Perceptron.

Network activation: for each neuron in output layer j=1,...,m

Perceptron learning function: 
for each feature weight wij, i=1,..,n of neuron in output layer  j=1,..,m

desired
output

Learning rate 
coefficient

actual
output

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Perceptron (2)
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Input vector x(t) = [+1, x1(t), x2(t), ..., xn(t)]
T

Weight vector w(t) =  [-𝜃, w1(t), w2(t), ..., wn(t)]
T , 𝜃 = bias

Actual response y(t) (quantized)

Desired response d(t) 
Learning-rate 𝜂, 0 < 𝜂 ≤ 1

1. Initialization. Set w(0) = 0. Then perform the following computations for time-step t = 1, 2, ....

2. Activation. At time-step t, activate the perceptron by applying 
continuous-valued input vector x(t) and desired response d(t).

3. Computation of Compute the actual response of the perceptron as 
Actual Response. 

4. Adaptation of Update the weight vector of the perceptron to obtain, where 
Weight Vector. 

5. Continuation. Increment time step t = t+1  by one and go back to step 2.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Perceptron Learning Algorithm
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Using artificial neural networks to solve real problems is a multi-stage process:

1. Understand and specify the problem in terms of inputs and required outputs.

2. Take the simplest form of network that might be able to solve the problem.

3. Try to find appropriate connection weights and neuron thresholds so that the 

network produces appropriate outputs for each input in its training data.

4. Test the network on its training data, and also on new (validation/testing) data.

5. If the network doesn’t perform well enough, go back to 3 and work harder.

6. If the network still doesn’t perform well enough, go back to 2 and work harder.

7. If the network still doesn’t perform well enough, go back to 1 and work harder.

8. Problem solved – move on to next problem.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Building an Artificial Neural Network
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● We can use McCulloch-Pitts neurons to implement 

the basic logic gates (e.g. AND, OR, NOT).

● Train network to calculate the appropriate weights 

and thresholds in order to correctly classify the 

different classes (i.e. form decision boundaries 

between classes).

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Decision Boundaries

x1 x2 y

0 0 0

1 0 0

0 1 0

1 1 1

AND
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● However, the simple exclusive or (XOR) cannot be solved by perceptrons.
[Minsky and Papert, “Perceptrons”, 1969]

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 0

○ 0 𝑤
1
 + 0 𝑤

2
 < 𝜃 → 0 < 𝜃

○ 0 𝑤
1
 + 1 𝑤

2
 > 𝜃 → 𝑤

2
 > 𝜃

○ 1 𝑤
1
 + 0 𝑤

2
 > 𝜃 → 𝑤

1
 > 𝜃

○ 1 𝑤
1
 + 1 𝑤

2
 < 𝜃 → 𝑤

1
 + 𝑤

2
 < 𝜃

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

The Problem with the XOR

XOR
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● The perceptron is limited to the classification of linearly 
separable patterns. How can we make it more flexible?

● Solution:
○ Use non-monotonic activation functions.
○ Use multilayer neural networks, which include at least 

one hidden layer of neurons with non-linear 
activations functions. 

● Problem: Desired output for hidden nodes is not known

● New Learning Algorithm: Backpropagation Algorithm

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Multilayer Neural Networks
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● Forward phase

○ Synaptic weights of the network are fixed. 

○ Input signal is propagated through the network layer by layer, 
until it reaches the output. 

○ Changes only in activation potentials and outputs. 

(1) forward propagation

(2) backward propagation

● Backward phase

○ An error signal is produced by comparing network output with 
desired response.

○ Resulting error signal is propagated through the network layer 
by layer in the backward direction.

○ Successive adjustments are made to the synaptic weights of 
the network.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Backpropagation Algorithm
Rumelhart, Hinton & Williams, Learning representations by back-propagating errors (1986)
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● The quality of your Machine Learning approach depends on the 
appropriate assembly of the features used for learning.

● Feature engineering is the process of using domain knowledge of the 

data to create features that make machine learning algorithms work.

● When working on a machine learning problem, feature engineering 

is manually designing what the input x
i
 should be.

● Coming up with appropriate features is 

○ difficult, 

○ time consuming, and

○ requires expert knowledge.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Feature Engineering
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● Deep Learning uses deep (multi layer) 

neural networks (DNN).

● Assume hidden layers with 1000 nodes 

each.

● In the given example, we need 2 Mio 

parameters to optimize between the 

hidden layers only.

● To classify images or for object detection, 

there would be no spatial invariance, i.e. 

lack of generalization.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Towards Deep Learning
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“Representation learning is a set of methods that allows a 

machine to be fed with raw data and to automatically discover 

the representations needed for detection or classification. 

Deep-learning methods are representation-learning methods 

with multiple levels of representation [...]”

-- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

About the Term “Deep Learning”
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Visual Analysis - Image Classification Tasks

Cat, 6 weeks old, André Karwath aka Aka, edited by Fir0002, CC-BY-SA 2.5

● An image is a tensor of 
integers between [0, 255], 
as e.g. 800 x 600 x 3 
(3 channels RGB)

Challenges:
● Viewpoint variation
● Background clutter
● Different Illumination
● Occlusion
● Deformation
● Intra class variation

https://commons.wikimedia.org/wiki/File:Six_weeks_old_cat_(aka)_edit.jpg
https://commons.wikimedia.org/wiki/User:Aka
https://commons.wikimedia.org/wiki/User:Fir0002
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Cat, 6 weeks old, André Karwath aka Aka, edited by Fir0002, CC-BY-SA 2.5

● CNNs are a special type of neural networks for processing spatially arranged data.

● CNNs are particularly adapted for visual analysis tasks.

● Fundamental building blocks of CNNs: convolution and pooling.

convolution pooling convolution pooling

feature learning classification

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Convolutional Neural Networks

● Convolutional layer: feature extraction

● Pooling layer: compress and aggregate information, save parameters 

https://commons.wikimedia.org/wiki/File:Six_weeks_old_cat_(aka)_edit.jpg
https://commons.wikimedia.org/wiki/User:Aka
https://commons.wikimedia.org/wiki/User:Fir0002
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● Purpose: examine (filter) the input from 

different perspectives.

● Each neuron checks a specific area of the 

input field using a filter kernel. 

● A filter examines the image for a certain 

feature, e.g. color, edges or brightness. 

● The result of a filter is the weighted input 

of a range and is stored in the 

convolutional layer.

● The depth of the convolutional layer is 

defined by the number of filters.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Convolution Layer

Convolutional filter acts as a 

classifier for local features
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● Purpose: subsampling

● Information is compressed between the 

individual convolutional layers via pooling 

layers (dimensionality reduction), as e.g. by 

simply taking the maximum.

● Pooling layers run through the feature maps 

created by the filters and compress them.

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Pooling Layer
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J.M.W. Turner, Rain, Steam, and Speed, 1844, Public Domain

● Transfer Learning (TL): learning a new task depends on the previously learned task

● TL for Deep Learning: off-the-shelf pre-trained models as feature extractors

○ Fine-tuning off-the-shelf pre-trained models via supervised domain adaption

convolution pooling convolution pooling

feature learning classification

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Transfer Learning

Replacing the 
fully-connected layer

https://commons.wikimedia.org/wiki/File:Turner-rain-steam-and-speed.jpg
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● Most deep learning architectures combine and recombine a limited set of architectural primitives

○ Fully connected layers

○ Convolutional layers

○ Pooling Layers

○ Recurrent neural network layers

○ Long Short-Term Memory Cells

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Deep Learning
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Leon A. Gatys, Alexander S. Ecker, Matthias Bethge:

A Neural Algorithm of Artistic Style. CoRR abs/1508.06576 (2015)
4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Style Adaption

https://arxiv.org/abs/1508.06576
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Leon A. Gatys, Alexander S. Ecker, Matthias Bethge:

A Neural Algorithm of Artistic Style. CoRR abs/1508.06576 (2015)

https://junyanz.github.io/CycleGAN/images/teaser_high_res.jpg 

Monet Photograph

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation 
Style Adaption

https://arxiv.org/abs/1508.06576
https://junyanz.github.io/CycleGAN/images/teaser_high_res.jpg
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Vom Klassifizieren zum Generieren

https://github.com/jantic/DeOldify https://github.com/jantic/DeOldify 
4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Colorization

https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
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https://junyanz.github.io/CycleGAN/ 

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Cross Domain Transfer

https://junyanz.github.io/CycleGAN/
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https://arxiv.org/pdf/1609.04802.pdf 

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Super Resolution

https://arxiv.org/pdf/1609.04802.pdf
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Image Completion

https://openai.com/blog/image-gpt/
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

From Classification to Generation
Text-to-Image

OpenAI, DALL·E: Creating Images from Text (2021)

https://openai.com/blog/dall-e/
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https://towardsdatascience.com/generative-adversarial-networks-explained-34472718707a 

Schmidthuber, 1992
Niemitalo, 2010
Goodfellow, 2014

Random 
Noise

Generator

Discriminator

Real
Images

Fake
Images

TRUE

FALSE

Training
Set

4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Comparative Learning
Generative Adversarial Networks (GANs)

https://towardsdatascience.com/generative-adversarial-networks-explained-34472718707a
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

The Clever Hans Effect 
or Why we shouldn’t always trust ML

https://commons.wikimedia.org/wiki/File:Osten_und_Hans.jpg

https://commons.wikimedia.org/wiki/File:Osten_und_Hans.jpg
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

The Chinese Room Problem

● Suppose you are placed in a room with a book of symbols and 
instructions.

● When a symbol appears, the book tells you what symbols to 
produce.

● To any outside observer, the room is able to perfectly answer 
questions in Chinese, but. . .

○ Does the room know Chinese?
○ Do you know Chinese?
○ Does the book know Chinese?

● The same dilemma occurs 
when we talk about machine learning...
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4. Basic Machine Learning / 4.8 Neural Networks and Deep Learning

Neural Networks Notebook
Neural Networks at work

Neural Networks Notebook

https://colab.research.google.com/drive/1ZkylZQaR_ju34u5EllAgj9Bd4SX9HfD_?usp=sharing
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● A word’s meaning is given by the words that frequently appear 
close-by.

● When a word w appears in a text, its context is the set of words that 
appear nearby (within a fixed-size window).

● Use the different contexts of w to build up a representation of w.

4. Basic Machine Learning / 4.9 Word Embeddings

Distributional Semantics

John Rupert Firth 
(1890-1960)

J.R. Firth (1957) A synopsis of linguistic theory, Studies in linguistic analysis, Blackwell, Oxford

Though quite agile on land, capybaras are equally at home in the water.
A giant cavy rodent native to South America, the capybara actually is the largest living rodent.



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

4. Basic Machine Learning / 4.9 Word Embeddings

Word Vectors

● We will build a dense vector for each word, so that 
it is similar to vectors of words that appear in similar contexts.

● Word vectors are a distributed representation. They are also referred to as 
word embeddings or word representations. 

0.286 
0.792 

−0.177 
−0.107 
0.109 

−0.542 
0.349 
0.271

capybara = 
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Overview

● Word2vec (Mikolov et al. 2013) is a framework for learning word 
vectors.

● Operating Principle:
○ We need to have a large corpus of text.
○ Every word in a fixed vocabulary is represented by a vector.
○ Go through each position t in the text, which has a center 

word c and context (“outside”) words o.
○ Use the similarity of the word vectors for c and o to calculate 

the probability of o given c (or vice versa).
○ Keep adjusting the word vectors to maximize this probability.

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781

https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Overview

● Example windows and process for computing P(wt+j|wt)

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781

…agile on land capybaras are equally at home ...

P(wt+1|wt)

P(wt+2|wt)
P(wt+3|wt)

P(wt-1|wt)

P(wt-2|wt)

center word
at position t

P(wt-3|wt)

outside context words 
in window of size 3

outside context words 
in window of size 3

https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Overview

● Example windows and process for computing P(wt+j|wt)

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781

…agile on land capybaras are equally at home ...

P(wt+1|wt)

P(wt+2|wt)
P(wt+3|wt)

P(wt-1|wt)

P(wt-2|wt)

center word
at position t

P(wt-3|wt)

outside context words 
in window of size 2

outside context words 
in window of size 3

https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Objective Function

● For each position t = 1, … , T, predict context words within a 
window of fixed size m, given center word wt

● The objective function J(𝜃) is the (average) negative log likelihood:

● Minimizing objective function == Maximizing predictive accuracy

Likelihood = 

𝜃 is all variables 
to be optimized

also referred to as 
cost or loss function



Information Service Engineering, Prof. Dr. Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure & AIFB - Karlsruhe Institute of Technology

4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Objective Function

● Minimizing the objective function

● How to calculate P(wt+j|wt;𝜃)?

● Idea: Use two vectors per word:
○ vw when w is a center word
○ uw when w is a context word

● The probability that a context word o co-occurs for a center word c:

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781

https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Objective Function

● This is a softmax function 

● The softmax function maps arbitrary values xi to a probability distribution 
pi
○ “max”: amplifies probability of the largest xi
○ “soft”: also assigns (some) probability to smaller xi

Dot product 
compares similarity,
larger dot product = 
larger probability

exponentiation to 
make everything 

positive

normalize over the 
entire vocabulary V
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● Word2Vec maximizes the objective function by putting similar words nearby 
in vector space.

● Two model variants:
○ Skip-gram (SG): 

Predict (sequence independent)
context words given the center word.

○ Continuous Bag of Words (CBOW): 
Predict center word from 
(bag of) context words.

4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Variants

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781

https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning / 4.9 Word Embeddings

Word2Vec
Skip-gram & CBOW

 Rong,   X.(2014). word2vec parameter learning explained. CoRR, abs/1411.2738

CBOW Skip-gram

softmax is on 
output vector 

https://arxiv.org/pdf/1411.2738.pdf
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● Word Vector Analogies

● Evaluate word vectors by how well their 
cosine distance after addition captures 
intuitive semantic and syntactic analogy 
questions.

● Discarding the input words from the search!
● Problem: What if the information is there 

but not linear?

4. Basic Machine Learning / 4.9 Word Embeddings

How to Evaluate?
Intrinsic Evaluation of Word Vectors

a:b :: c:d

man : woman = king : ?
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4. Basic Machine Learning / 4.9 Word Embeddings

Word Embeddings Notebook
Word2Vec at work

Word Embeddings Notebook

https://colab.research.google.com/drive/1HRp0FOEZdprOb1EbSFBLSkfEEFcmY13g?usp=sharing
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Information Service Engineering
4. Machine Learning 
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4.1 A Brief History of AI

4.2 Introduction to Machine Learning

4.3 Main Challenges of Machine Learning

4.4 Machine Learning Workflow

4.5 Basic ML Algorithms 1 - k-Means Clustering

4.6 Basic ML Algorithms 2 - Linear Regression

4.7 Basic ML Algorithms 3 - Decision Trees

4.8 Neural Networks and Deep Learning

4.9 Word Embeddings

4.10 Knowledge Graph Embeddings
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings

Semantic Similarity
From Words to Entities

● For Word Embeddings, words with similar meanings are mapped

to close vectors in a vector space.

● How can we map this concept to Knowledge Graphs?

● When are two nodes (entities) semantically similar?

○ If they can be described by the same/similar facts, as e.g.

■ Carbon Dioxide is a Greenhouse Gas and
Water Vapour is a Greenhouse Gas.

■ Albert Einstein is a Physicist and
Stephen Hawking is a Physicist.

■ Is Stephen Hawking more similar to Albert Einstein or 
to Carbon Dioxide? 

[1]
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings

Semantic Similarity

Carbon 
Dioxide

Chemical 
Compound

Acidic 
Oxide

Gas

Greenhouse 
Gas

Water Vapour
Albert 

Einstein

Physicist

Person

Ulm

Stephen 
Hawking

Jan Baptist 
van Helmont

Birth place

Mileva 
Maric
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings

Semantic Similarity

Carbon 
Dioxide

Chemical 
Compound

Acidic 
Oxide

Gas

Greenhouse 
Gas

Water Vapour
Albert 

Einstein

Physicist

Person

Ulm

○ Carbon Dioxide and Water Vapour share similar (structural) context in the graph.

Stephen 
Hawking

Jan Baptist 
van Helmont

Birth place

Mileva 
Maric
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings

Semantic Similarity

Carbon 
Dioxide

Chemical 
Compound

Acidic 
Oxide

Gas

Greenhouse 
Gas

Water Vapour
Albert 

Einstein

Physicist

Person

Ulm

○ Stephen Hawking and Albert Einstein share similar (structural) context in the graph.

Stephen 
Hawking

Jan Baptist 
van Helmont

Birth place

Mileva 
Maric
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings

Semantic Similarity

Carbon 
Dioxide

Chemical 
Compound

Acidic 
Oxide

Gas

Greenhouse 
Gas

Water Vapour
Albert 

Einstein

Physicist

Person

Ulm

○ “You shall know a node by the company it keeps”,
i.e. similar nodes can be identified by having the same/similar neighborhood (context)

▶ Distributional Semantics

Stephen 
Hawking

Jan Baptist 
van Helmont

Birth place

Mileva 
Maric
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings 

Graph Embeddings

(Knowledge) Graph Representation Vector Space Representation

Idea:  Find embedding of nodes in a low-dimensional vector space 
  so that “similar” nodes in the graph have vector embeddings that are close together.
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings 

Knowledge Graphs are more than just plain Graphs

● Besides entities (nodes), we also want to represent

○ Properties and property relations

■ Hierarchies and inverse properties

■ Symmetry and antisymmetry

■ Reflexivity and irreflexivity

■ Functionality and inverse functionality

■ Transitivity

○ Literals

■ Multimodality (text, numbers, images, etc.)

■ Datatype semantics
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings 

Knowledge Graph Embedding Construction Kit

Costabello, L. et al, ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice, 2020

① Knowledge Graph G

② Scoring Layer f(s,p,o) ∊ ℝ

③ Loss Functions 𝓛
④ Negatives Generation
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4. Basic Machine Learning / 4.9 Knowledge Graph Embeddings 

Knowledge Graph Embeddings

Many ways to generate Knowledge Graph Embeddings:

● Translational Methods: TransE, TransH, TransR, TransEdge, …

● Semantic Matching: RESCAL, DistMult, HolE, ComplEx

● Graph Convolutional Networks: R-GCN, TransGCN, ConvE, ConvR, ConvKB

● RelationPaths: PTransE, DeepWalk, RDF2Vec

● ...
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4. Basic Machine Learning / 4.10 Knowledge Graph Completion

Task Example Result

Triple Classification (JosephFourier, occupation, physicist)? (yes, 95%)

Tail Prediction (JosephFourier, occupation, ?) (1, physicist, 0.95),
(2, chemist, 0.93) ...

Head Prediction (?, occupation, physicist) (1, AlbertEinstein, 0.91)
(2, StephenHawking, 0.90)

Relation Prediction (JosephFourier, ?, physicist) (1, occupation, 0.95)

Entity Classification
(Type Prediction)

(JosephFourier, isA, ?) (1, Person, 0.99)
(2, Human, 0.99),...

Li
n

k 
P

re
d

ic
ti

o
n

4. Basic Machine Learning / 4.10 Knowledge Graph Completion

Knowledge Graph Completion - Link Prediction
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4.1 A Brief History of AI

4.2 Introduction to Machine Learning

4.3 Main Challenges of Machine Learning

4.4 Basic ML Algorithms 1 - k-Means Clustering

4.5 Basic ML Algorithms 2 - Linear Regression

4.6 Basic ML Algorithms 3 - Decision Trees

4.7 Neural Networks and Deep Learning

4.8 Knowledge Graph Embeddings

4.9 Knowledge Graph Completion
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Information Service Engineering
Lecture Overview

1. Information, Natural Language and the Web

2. Natural Language Processing

3. Linked Data Engineering 

4. Basic Machine Learning

5. ISE Applications

60
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4. Basic Machine Learning - 3 
Bibliography
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● S. Marsland, Machine Learning, An Algorithmic Perspective, 2nd. ed.,

Chapman & Hall / CRC Press, 2015.

○ Chap. 3 (Neural Networks)
(The book should also be available on the Web as pdf, just keep looking…)

● Word Embeddings:
Mikolov, Tomas; et al. (2013). Efficient Estimation of Word Representations in Vector Space. 
arXiv:1301.3781 

● Knowledge Graph Embeddings:
Wang et al., Knowledge graph embedding: A survey of approaches and applications. IEEE 
Transactions on Knowledge and Data Engineering (TKDE), 2017.
(if you want to deepen your knowledge beyond the scope of the lecture…)

https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1301.3781
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4. Basic Machine Learning - 3   
Syllabus Questions

● How does a Biological Neural Network work?

● Explain the McCulloch Pitts Neuron model.

● Explain a Perceptron.

● Why can’t a Perceptron solve the XOR problem?

● What are the limitations of Deep Neural Networks?

● How to Convolutional Neural Networks overcome (some of) the problems/limitations of Deep 

Neural Networks?

● Explain Word Embeddings.

● Explain Graph Embeddings.

● What is Knowledge Graph Completion?
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